AD~A087 310 GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION A-'ETC F/8

STING COBOL PROGRAMS BY MUTATION. VOLUME 1. INTRODUCTION To T-ETC(U)
FEB 80 J M HANKS NNW!.Q-?’-C-G!
UNCLASSIFIED

END
Ao
9-80
oTic

==
)
»n

1.0 ¥
‘_.—'iﬁﬂi-g?

[

'40
I““ I .I -
emm————
m———
——
———
—_—

Jizs fiis pee

=
N
N

rrrr

=
g N
= IS

E

o

MICROCOPY RESOLUTION TEST CHART

TN

WIS DOCUWENT IS BEST QUALTTY PRACTICARLE
PHE COPY FURSLSHID TO DDC CONTAINED A /

'Y STOWIPICANT NORBER OF PAGES WHIGH DO ROT

i, document hoas beon wRPE
& for pubtc relxse aud sale; ity
5 ! ,:’, distribution is un!imited.-r , . ;
i YA |
i School of *

74 Information and Computer Scienc

NEPRODUCE LIGIRLY o _uurs

o

3 GEORGIA INSTITUTE

tad

2 OF TECHNOLOGY
2 - 80 6 19 017

T MTEIEINAT, TS €T WA BT s AR R RS

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY. '

@

C‘ IGIT-ICS-BO/MQ!{ - \f& LM - -{ /

i A dn = »

IESTING @L PROGRAMS BY mrATI(l‘l‘
\Tolumc Vt.,I-;mcmcnon 0 nfg%is.l SYSTEM o

#————& = — ek
“JEANNE PARTE JFANKS
D D

e
e "";'l
AN
. s
e\
¢ D
N .
/ v G
p
SA
; A
E
E‘
R - *r’
Ioise e
o Ty
E aistrin 1y 1 <!
f This research was supported in part by The US Army Institute for
£ Research in Management Information and Computer Science, ARO Grant
5‘ AG29-78-G-0121 'and The Office of Naval Research, Grant No.
ZAZ
1 757G A2

v TESTING COBOL PROGRAMS BY MUTATION

A THESIS

E ‘ Presented to

: The Faculty of the Division of Graduate Studies
By

Jeanne Marie Hanks

- In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Information and Computer Science

Georgia Institute of Technology

February, 1980

ACKNOWLEDGEMENTS

I am grateful for the support of this thesis in part by
The US Army Institute for Research in Management Information
and Computer Science, ARO Grant No. DAAG29-78-G-0121 and
The Office of Naval Research, Grant No. N00014-79-C-0231.

I would like to thank my thesis advisor, Dr. Richard
A, DeMillo for providing continual support, thoughtful
criticisms, and valuable suggestions for this thesis, and
the members of my reading committee, Dr. Richard J.
F LeBlanc and Alton P. Jensen, for their helpful comments and
suggestions,
F I would also like to thank Allen T. Acree for his as-

sistance in implementing the Cobol Mutation System.

I am also grateful to the graduate office for the

waiver of certain format requirements so that this thesis

could be generated on the PRIME-400 mini-computer.

[
iii
TABLE OF CONTENTS
E
ACKNOWLEDGEMENTS. . . & ¢ « ¢ o o o o o o ii
LIST OF ILLUSTRATIONS . . ¢ o« o &« o o o & iv 3
Chapter]
I. INTRODUCTION . o o« o o o o o o o 1
II. COBOL MUTATION SYSTEM (CMS.l). . 10
III. EXPERIENCE . &« ¢ ¢ o o 2 o « s o« 36
IV. CONCLUSION . « . « « « « « « o . 66
Bibliography. « « ¢« o« o ¢ o ¢ o o o o o & 68
Appendix)
A, COBOL TUTORIAL. . .« ©+ o o o o o & 69
B. SYSTEM DOCUMENTATION., 81
| ¥ | Accession For
CRTIS Giadl
| DdC TAB
| Un-zmaunced
| Juutlfic:‘.ion&ﬂ-’-‘lz—
, R
‘“O“’Fﬂ"
ol
] 5 L A SIS Ay
| l"."":_i.‘~“-' FRa s f:,_;:"f‘f’)
ﬁ {acatieoijor
intst speuial
| 4
‘ |
i |

Bl &

Figures

LIST OF ILLUSTRATIONS

CMS Interaction. ¢ o ¢ o ¢ o ¢ o =
CMS File Layout. ¢« « « ¢ ¢ o o o o ¢ o o =
MOVENW and MOVENM Original Program Listings.
MOVENW and MOVENM Listings With Equivalent
Mutants and Mutant State Information . . .
MOVEED Original Program Listing.
MOVEED Test Case that Uncovered an Error . .
Corrected Program Section of MOVEED.
MOVEED Test Case that Uncovered Second Error
MOVEED Final Corrected Program Listing . . .

MOVEED Status Information after Testing. . .

49

50
57
58
60
60
62

63

[

o Y

ABSTRACT

Testing Cobol Programs by Mutation
Jeanne M. Hanks
225 Pages

Directed by Dr. Richard. A. DeMillo
\\yprogram mutation is a testing technique which has been
applied to Fortran programs{ABDLS]. This thesis will
describe the application of mutation to the Cobol language
in an automated program mutation system. The thesis will
describe the development of a Cobol Mutation System (CMS.1),
its testing using Fortran mutation analysis, and the subset
of Cobol that 1is supported by CMS.1. The internal
representation selected to represent the Cobol source
statements and a description of the mutant operators that

are implemented in CMS.1l will also be supplied.

!
1
!

CHAPTER I

INTRODUCTION

Program Testing

Methods of assuring program correctness can be divided
into two different approaches: program proving techniques
and program testing techniques. Program proving involves a
formal proof that a program performs correctly [DLP]. This
approach 1is currently ineffective because the proofs are
generally hard to produce manually and are often incorrect
or prove the wrong result [DLP].

The goals of program testing are to increase confidence
that a program will perform as desired, to discover errors,
and to provide some measure of performance. Various tech-
niques have been proposed to reduce testing to a systematic
methodology. These techniques include random generation,
symbolic execution, and mutation analysis.

Random generation of test cases 1is easy to concep-
tualize and to implement but is rather inefficient [DLS1].
The number of test cases necessary to execute the ‘normal’

flow and the 'exception' flow in a program can become very

large.

Symbolic execution of a program produces better test

data than the random dgeneration method. Variables are
treated as algebraic unknowns and constraints are generated
in terms of those unknowns to 1indicate those restrictions
which data must satisfy if a certain path is to be executed.
Symbolic execution generates data which executes every
statement in the program and executes each branch.

Mutation analysis involves generating test data by any
means that is available, then appiying the technique to gain
some measure of confidence of test "coverage". Through the
mutation process a set of test data 1is generated that
increases the confidence of a program's correctness.

During mutation a program is perturbed in simple ways
which simulate typical programming errors. This process
generates a variety of mutant programs. Given a set of test
data that the programmer believes tests his program, the
mutant programs are distinguished from the original program
by their behaviour on the test data. Test data which is
able to distinguish all non-equivalent mutants of a program
must thoroughly exercise the program and, hence, provide

strong evidence of the program's correctness [ABDLS].

Cobol Mutation
An automated system for Cobol Mutation Analysis (CMS.1)
has been developed and implemented at Georgia Tech on a
PRIME 400. CMS.1 has been derived from the Pilot Mutation

System (PIMS or FMS.1l) for Fortran program mutations which

was designed at Yale University and has been implemented at

3

Yale, Georgia Tech and the University of California,
Berkeley ([BDLS]. CMS.1 has the added capability to handle
I1/0 which is not currently available for Fortran.

CMS.1 is an interactive system that accepts as input a
Cobol program and representative test data, which, when ap-
plied to the Cobol program, produces reference output that
the programmer has verified to be correct. CMS.l generates
a large set of mutants of the Cobol program and executes
these interpretively. The resultant outputs are compared to i
the reference output to identify (1) deficiencies in the
test data, or (2) functionally equivalent versions of the
program which are possibly more efficient. Through this
interactive process, the user can become more confident of
the program's correctness. For a detailed study of this
aspect of mutation see [ABDLS, AA].

CMS.1 execution consists of five main phases: ENTRY,
PRE-RUN, MUTATION, INTERPRETATION, and POST~RUN. Figure 1
shows interaction with CMS.1.

An input program, P, is parsed into an intermediate
code. If any Cobol syntax errors exist in P, the errors are
displayed at the user's console. When no syntax errors
exist and the intermediate code has been <created, mutant
descriptors for the program are generated. Now the original
program is executed interpretively on a set of test data :
supplied by the user. The results for the test data are

shown to the user who verifies them as either acceptable or

T

uor3ldeIAIUI SKY [dIndyy

i ogAiE P

vivad 1S3L
viva 1S3 WYH90Hd
(3131dW0J X) 40 NOILVLNW
NOILVNIVAI
WYd90dd
3N0S

A9070Q0RLIW LSAL NOILVLINW

it bttt il it ik il

unacceptable. The user then has the opportunity to activate
programs of some or all mutant types that have been
generated for the original program. The results of the
mutant runs are displayed for the user.

The ENTRY phase interacts with the user and initializes
the system. The user gives the name of the program file to
be tested. The internal files necessary for CMS.1l runs are
created by using the program's file name and adding ex-
tensions to this name. For example, the files which are

created are:

filename.MR mutant record file
filename .MS mutant status file
filename.LO log file
filename.TD test data file
filename.TS test status file
filename.IF internal form file

The ENTRY phase determines if the CMS.1 run 1is the
initial run or a continuation of a previous run by checking
whether these files exist or not. Even if this run 1is a
continuation, the wuser 1is given an opportunity to restart
the analysis. If the run is a continuation of a previous
run, then the files are loaded. If this is a fresh run,
then the program is parsed and its internal files are
created (MEMORY, SYMBOL TABLE, CODE, and STATEMENT files).
At this time, all the mutant records for the program are
created.

The PRE-RUN phase interacts with the user to obtain

test cases. These test cases may be contained in files so

the user enters the name of the data file or the test data
may be entered directly into CMS.1. When all the input test !
data has been given, the program is interpreted on the data.
A copy of the test cases and the results are displayed for
the user. The wuser is then asked to indicate if the test
cases are acceptable or not. A test case is acceptable if
it generates correct results. Any test cases which are
marked as unacceptable are deleted from consideration.

The MUTATION phase gains control at this point. The
user is given a list of the mutant types, for example scalar

for scalar replacement, relational operator replacement,

etc., that can be considered and asked which one he would
like to activate. Once the mutant programs have been ac-
tivated, they are executed interpretively on the test data
that has been supplied. When mutants are being executed -n
a test case, only those mutants that affect a statement
which is executed by the test case are interpreted. For an
explanation of the mutants that are implemented in CMS.1,
see the discussion on the MUTANT RECORD file.

The INTERPRETATION phase is invoked by the PRE-RUN
phase to execute the original program on a set of tes% data
with execution returning to the PRE-RUN phase, The
INTERPRETATION phase is also invoked in a loop by the MUTA-
TION phase for interpreting the mutants and obtaining

results of the mutants.

The interpreter uses a program counter, PC, to control

PR SN A 18P o . £ Rkl o A SR M et o e S e e e e et O i b

flow through the STATEMENT table. Some error checking is

!
i
’ :f
done by the interpreter; the errors that can be caught and 5
i
their associated error codes are: !

’ 1 TRAP, execution Beyond end-of-code, or SIZE ERROR

without an exception handler.
2 TIMEOUT

more statements have been executed than is allowed.
3 DATA FAULT
, incorrect mixing of numeric and alphanumeric data.
3 4 UNDEFINED
attempt to reference an undefined data item.
5 1I/0 FAULT IN OPEN/CLOSE
attempt to open a file that is already opened or
attempt to close a file that is not opened.
6 ATTEMPT TO READ PAST EOF
OVERWRITE OR OVERREAD, COMPARED TO ORIGINAL PROGRAM
this error is detected when a mutant program tries
to read or write more data than the original program
did.
8 OUTPUT FILE TOO LARGE TO FIT IN BUFFER
the programs output exceeds the limits of the CMS.1
. system.
9 ARRAY ELEMENT OUT OF BOUNDS
10 INCORRECT OUTPUT °
output of mutant program differs from that of the
original test program.
11 ILLEGAL CODE IN INTERNAL FORM
incorrect internal code has been generated by the
system,

.
~

A variable 1is wused to communicate errors to the PRE-RUN

phase and the MUTATION phase.

et o o

When the interpreter executes a mutant, the results are
compared with the original program output as it is generated

(i.e., when a write statement is executed). If the two out-

LT TR YRS ek, o g P | i o 4 - e

t
L puts are not the same, then interpretation is halted and an
4
E error code is reported to the MUTATION phase so that mutant
% will be marked as ‘killed’. The main structure of the

interpreter is based on a Fortran COMPUTED GO TO statement.

For a detailed discussion of the interpreter, see the
documentation for SUBROUTINE INTERP.

After all the mutant programs have been executed, the
results are displayed for the wuser during the POST-RUN
phase. The user may see the live mutants, mark mutants as
equivalent, turn previously marked equivalent mutants back
on, stop the run, or loop back to the beginning of the run
where more test cases may be entered.

If the mutants are to be seen, it is necessary to first
'decompile’ the internal code for the statement into a
recognizable Cobol statement. This 'decompiling' is accom-
plished by examining the internal form for a source
statement and reconstructing its structure using the HASH

TABLE for the printable names of variables.

Plan of Presentation

The purpose of this thesis is not to justify mutation
analysis as a testing tool but to describe the implementa-
tion of a mutation system for Cobol. The Cobol system is
written in Fortran and several major routines have been
tested on the Fortran mutation system. A detailed discus-
sion of the Cobol Mutation System (CMS.l) is given in Chap-
ter II which includes a description of the subset of the
Cobol language supported by CMS.1l, a description of the file
structures, and a description of the mutant oper.tors im-
plemented in CMS.1l. Chapter III contains a sample run on

the CMS.1l system and a discussion of testing CMS.1l routines

U OO TUI DR

’
9 ;
0 on the Fortran mutation system, FMS.2. The conclusion is in
Chapter IV which contains suggestions for improving the
Cobol mutation system. Appendix A contains a Cobol tutorial
' of the Cobol subset suppported by CMS.1l and Appendix B
contains detailed documentation on each routine in the CMS.1
system. 4
b 4
<
;
{
{
{

10

CHAPTER 1II

COBOL MUTATION SYSTEM (CMS.1)

Cobol Subset and Intermediate Code

The level of Cobol which can be accepted by CMS.1 |is
referred to as level 1 Cobol. The Cobol source program must
be in the standard Cobol format with columns 1-6 containing
the sequence number (which is ignored by CMS.1l); column 7 is
either blank or contains a hyphen for the continuation of a
non-numeric 1literal or contains an asterisk for a comment
line; information beyond column 72 is ignored [A]. A list
of acceptable Cobol verbs follows. For each verb the format
for the internal form generated by the parser for use by the
interpreter is given. A detailed Cobol tutorial is given in

Appendix A.

MOVE
MOVE {data name-1 | literall TO data-name-2
[data-name-3] ...

The internal form:
<MOV><n><source><dest-1>...<{dest-n>

ADD

ADD {data-1 | literal-1} ([data-2 | literal-2] ... TO

data-m [ROUNDED] ([ON SIZE ERROR imperative-statement]

The internal form:

<ADD><rnd><size><n><op-1>...<op-m>
The rnd field specifies whether to round the result or
» not. The size field indicates if a size error clause was

given or not.

ADD GIVING

ADD {data-1 | literal-1} {data-2 | literal-2}

(data-3 | literal-3]... GIVING data-m [ROUNDED] J

[ON SIZE ERROR imperative statement] %
The internal form: {

<ADG><rnd><size><n><op-1>...<op-n><dest> 'i
SUBTRACT

SUBTRACT {data-1 | literal-1} [data-2 | literal-2]...

FROM data-m [ROUNDED] [ON SIZE ERROR imperative
statement]
The internal form:

<SU><rnd><size><n><op-1>...<op—n>

SUBTRACT GIVING

SUBTRACT {data-1 | literal-1l} [data-2 | literal-2]...
FROM {data-m | literal-m} GIVING data-n [ROUNDED]

[ON SIZE ERROR imperative-statement] ;
The internal form:)

<SUG><rnd><size><n><op-1>...<op-n><dest>

12

MULTIPLY
MULTIPLY {data-1 | literal-1l} BY data-2 [ROUNDED]
[ON SIZE ERROR imperative statement]
The internal form:

<MUL><rnd><size><op-1><op-2>

MULTIPLY GIVING

MULTIPLY {data-1 | literal-1} BY {data-2 | literal-2}

GIVING data-3 [ROUNDED] [ON SIZE ERROR
imperative-statement]

The internal form:

<MUG><rnd><size><op-1><op-2><dest>

DIVIDE

DIVIDE {data-1l | literal-1} INTO data-2 [ROUNDED]

[ON SIZE ERROR imperative-statement]
The internal form:

<DIV><rnd><size><op-1l><op-2>

DIVIDE GIVING

DIVIDE {data-1 | literal-1} { INTO | BY }

{data-2 | literal-2} GIVING data-3 [ROUNDED]

[ON SIZE ERROR imperative-statement]

The internal form:

<DIV><rnd><size><op-1><op-2><dest>

For the internal form, the parser codes both the BY and
INTO options in the form of the INTO. CMS.l will accept

both forms of the DIVIDE GIVING statement.

13

COMPUTE

COMPUTE data-l [ROUNDED] = {data-2 |

literal-1l | arithmetic-expression}
[ON SIZE ERROR imperative-statement]

The internal form:

<CoM><rnd><size><ident><arithmetic expression>]
Where ident refers to the data item that receives the

result of the compute. !

Go TO !
GO TO procedure-name
The internal form:

<GO><procedure>

GO TO ... DEPENDING
GO TO procedure-name-1 [procedure-name-2]...
DEPENDING on data-name

The internal form:

o vt

<GoD><n><ident><proc-1>,..<{proc-n>

PERFORM
PERFORM procedure-name-1 [THRU procedure-name-2]
The internal form

_‘ <PEV><proc-1><proc-2>

€

PERFORM-VARYING

PERFORM procedure-name-1 [THRU procedure-name-2]

VARYING data-name-1 FROM {literal-2 | data-name-2}

BY {literal-3 | data-name-3} UNTIL condition-1

The internal form:

<PEV><proc-1><proc-2><id><low><high><inc>

<REP1><low><high><inec><start><stop>

The REP1 operation for the internal form of a PERFORM
VARYING statement is an internal operation to aid 1in the
repeating of the procedures. After the procedures are
executed the control passes to this statement where the con-
dition can be tested for its truth to determine if the
procedures should be executed again or if the PERFORM VARY-

ING is to be terminated.

PERFORM TIMES

PERFORM procedure-name-1 [THRU procedure-name-2]

{data-name-1 | integer-1} TIMES

The internal form:

<PET><proc-1><proc-2><ident>

<REP2><count><start><stop>

As in the PERFORM VARYING, it was necessary to im-
plement another internal operation for the PERFORM TIMES to
determine how many times the procedures have been executed.

The count field is decremented each time the procedures are

executed until it is zero and the PERFORM TIMES 1is com-

e a T qipa T L O et iy . e

T N ——— s s)) e e e ———————)

»
15
» pletely executed. The start field is a pointer to the first
statement in the procedures being PERFORMed and the stop
field contains the statement number of the 1last statement
’ being PERFORMed.
PERFORM UNTIL
¢ PERFORM procedure-name-1 [THRU procedure-name-2]
UNTIL condition-1
The internal form:
7 <PEU><proc-1><proc-2><logical expression>
IF
- IF condition {statement-1 | NEXT SENTENCE }
({ ELSE } {statement-2 | NEXT SENTENCE }]
The internal form:
<IF><ELSE-statement pointer><logical expression>
OPEN
OPEN INPUT [file-name] ...
OPEN OUTPUT ([file-name] ...
The internal form:
s <OPEN><1 | 2 | ... | 20>
Where 1 thru 10 reference one of the ten input files
and 11 thru 20 reference one of the ten output files.
2

AR T i3 T g 4 R T Gt gy LAMME T L A b st i | H e L ab e

CLOSE

CLOSE file-name-1 [filename-2] ...
The internal format:

<CLOSE><1 { 2 | ... | 20>

READ

READ file-name RECORD [INTO data-name]
AT END imperative-statement
The internal form:

<READ<1 | 2 | ... | 10><into-ident>

WRITE

WRITE record-name [FROM data-name]

The internal form of this statement is:

<WRITE><11l | 12 }| ... | 20><from-ident><advance>

sTOP

STOP RUN

The internal form:

<STOP>

There are two operations that are coded by the parser
for wuse in the CMS.1l system. These two operations are not
supported in the Cobol subset and will not be compiled by
the parser. These two operations are the RETURN and the NO-
oP. These operations are needed to implement the PERFORM

verbs; when executing a PERFORM, it is necessary to return

. » program control to the statement following the PERFORM
statement after the last statement of the paragraph range
has been executed. To make this feasible, the parser
inserts a NO-OP at the end of each paragraph and the
interpreter changes the NO-OP into a RETURN, if a PERFORM is

being executed.

File Structures‘

There are several files the system produces in order to
store information from one run to the next. These are shown
in Figure 2, which also outlines the major functions of each
phase. The major functions are:

The internal form file stores the parsed version
of the program.

The test data file stores for each test case, the
test data input and the results of execution of that
test data.

The mutants information file keeps the mutant
descriptor records plus various other counts on
what types of mutants have been produced.

For a more detailed discussion see [BDLS].

INTERNAL REPRESENTATION

The 'INTERNAL FORM' of a program consists of the

STATEMENT table, CODE array, SYMBOL TABLE, MEMORY array, and

e

HASH TABLE. The INTERNAL FORM file contains, in addition to

o

18

Inofe] T4 SKD ¢ In3Ty

spiodes
jusuvazed Inpoag

pov
s3Insea Aeydeiq

SIUTINR FATT
go s3unod Supdeey
‘sueIne Y sIndexy

ASVHd
NOY 1804

ISR
NOIIVIIN

J

op203e2 103dyade9p
uotITING Y3 93IWel)

°39p 3993 43 peey
we1%02d sq3 seawyg

IsVRd
NOLIVEVITRd

LR T P

T T A e s O 2 oA 01 s . S AR - 2 By - LN bl T . an it S e e s it AT M S i i - — I TR I O S

19

¢ these files, the sizes for each of the files. These sizes

are stored in the beginning of the INTERNAL FORM file; fol-

lowed by the STATEMENT, CODE, SYMBOL, MEMORY, and HASH
! . files. The INTERNAL FORM files are created when the program
is parsed. Due to the nature of the CMS.l system there are
several levels of indirection which have been incorporated
in order to maintain all the information that is necessary
for mutation.

Every entry in the STATEMENT table references its code
in the CODE array which contains references to the SYMBOL
TABLE for variables, literals, paragraph-names, etc. and
finally the SYMBOL TABLE contains references to memory
locations for variables and literals in the 1literal pool
contained in 1low memory. The SYMBOL TABLE also contains :
references to the HASH TABLE for a variable's name; this is '

usually used for 'decompiling' a statement.

STATEMENT TABLE FILE

The STATEMENT table contains an entry for each
executable statement contained in the program. The file
contains records of three elements each with the following

format:

Position Use

1l - reference to the code array for the statement

|

20

2 - line number of the associated source listing
3 - statement 1level

0 - continuation of a statement

1 - beginning a new statement

2 - n - depth in a conditional statement

CQDE ARRAY

The CODE file is a sequential array that contains the
intermediate code for each Cobol statement; it also contains
an element giving the length of the code for a statement.
The length of each Cobol statement varies depending on the
operation and the length can even vary for the same type of
operation.

This organization of the CODE array allows for easy im-
plementation of mutant descriptors. It is not necessary to
alter the internal code for the original source statement
because the internal code for the mutated statement can be
appended to the end of the code array. The statement table
entry for the code reference can be changed to reference the
mutated statement. Cleaning up after a mutant program is
executed 1is accomplished by changing the statement table

reference back to the internal form of the source statement.

SYMBOL TABLE

The SYMBOL TABLE has been designed to contain important

information that must be obtained at run time. It 1is thus

| o N

21

necessary for the SYMBOL TABLE to be resident in core during
execution.

The first record in the SYMBOL TABLE is for the name of
the Cobol program. The next 20 records are reserved for the
INPUT and OUTPUT files that can be used in the Cobol program
(CMS.1 allows up to 10 input files and 10 output files).
The reserved words ZERO and BLANK are used so widely in most
Cobol programs that we have included these variables
automatically in the SYMBOL TABLE and in MEMORY. The rest
of the SYMBOL TABLE is created by the parser. Items are
entered into the SYMBOL TABLE as they are encountered in the
program. The HASH TABLE is used to determine if a data item
has been entered previously or not. All the data items
defined in a Cobol DATA DIVISION are entered in the same or-
der as they are encountered. After the DATA DIVISION is
parsed, the PROCEDURE DIVISION is parsed and the PARAGRAPH-
NAMES and literals are entered into the SYMBOL TABLE. The
SYMBOL TABLE file 1is an array containing 10 elements with

the following information for each record:

Position Use

1 - pointer to the hash table for the printable name,
this is used for ‘decompiling' a statement.

2 - type
1 - unsigned numeric
- signed numeric
- alphanumeric
- edited
group item
~ continuation of a table item
- numeric literal

NOoOUneSswN
!

22

8 - alphanumeric literal
9 - paragraph name

3 - level number, or
beginning statement number if this is a paragraph
name entry

4 - number of digits for a numeric item, or,
memory location for a PICTURE item, or,
ending statement number if this is a paragraph
name entry, or
multiplier for the first subscript if this is
a table item entry

5 - memory location, or
multiplier for the second subscript if this is
a table item entry

6 - length of the item in memory, or
max imum allowed subscript for the first subscript
if this is a table item entry

7 - table level
0 - scalar
1 - one level table, row item
2 - two level table
or, the maximum allowed subscript for the second
subscript if this is the second row of informa-
tion table item entry

8 - pointer to the value string in the literal pool,
if a VALUE clause was specified, or
the number of occurrences in the second row for a
table item entry
9 - SYMBOL TABLE entry for a redefined item
10 - Number of the source statement for the data-item
entry.
MEMORY
The MEMORY array contains the Cobol source program's
memory and the storage areas necessary to execute a Cobol

program. MEMORY is a sequential single-dimension array.

The first thirty elements are reserved for the interpreter's

working storage,. The 1literal pool follows the working

”a

storage. This literal pool contains the PICTURE

specifications for the edited data items, constants used in
the Cobol VALUE clauses, and any literal constants used in
the program, The Cobol variables ZERO and BLANK are the
first two items in the literal pool. A variable is kept in
COMMON to contain the 1location of the end of the literal
pool. The working memory follows the 1literal pool and
consists of character data. PICTURE items are the only
items that do not have all their auxilliary information
contained in the SYMBOL TABLE because they need more in-
formation than can be contained in one record; therefore,
three extra words are stored in memory with a PICTURE's

description. The structure of a picture item follows:

Position Use
1 - Picture length
2 - Number of digits in the picture
3 - Number of decimal digits in the picture
4 - The actual picture description

HASH TABLE
The HASH TABLE is used to hold the printable names of
Cobol vreserved words, program file names, and variables.
The HASH TABLE contains the names for all the RESERVED
words, the Cobol program name, the Cobol input and output
file names, the variables, and the paragraph names. Each
record in this file contains 17 words. The first 15 words

are used to store the name with 2 characters per word; Cobol

s

P

"l!...l..r.p—U-!-ﬂ-'---------!..!.!!!!.llll.!!!!!!!!!!!7w‘"HA .

24

allows a maximum of 30 characters per name. The 16th word
contains the number of characters actually used in the name
and the 17th word is the location in the SYMBOL TABLE for

this item. The record layout is as follows:

Position Use
1 thru 15 - Print name with two characters per word.

16 - Number of characters in the print name.
17 - SYMBOL TABLE location for the item.

TEST STATUS FILE

The TEST STATUS file contains status information for
each test case that is accepted for CMS.l. Each record of

the file contains 42 words of information. The first record

of the file indicates which of the twenty allowable Cobol !
files are used, how many test cases have been defined, how

many test cases have been defined during the current run,

and the next available location in the file for appending
information for the next test case to be defined. Note that
INPUTO is the first Cobol input file and that INPUT9 is the
tenth input file and similarly for the output files. The
format of the first record in the TEST STATUS file is as

follows:

Position Use

1 - Indicates if INPUTO has been used or not.
0 - not used
1 - used

2 - Indicates if INPUT]1 has been used or not.
0 - not used
1 - used

25

3-20 - Similar to the above for INPUT2 thru INPUT9
and for OUTPUTO thru OUTPUTI.

21 - Total number of test cases.

22

The number of test cases previously defined.

23 - Location of the next available record in this

file for appending information for a new test
case.

After the first record for file information, there are
two records for each test case. The first contains informa-
tion about the number of records in each Cobol input and
output file and the starting position for the file 1in the

TEST DATA file. The format of the TEST STATUS file is:

Position Use

1l - The starting position in the TEST DATA file for
INPUTO.

2 - The number of records in INPUTO.

3 - The starting position in the TEST DATA file for
INPUT1.

4 - The number of records in INPUTI.

5-40 - Similar to the above for the other INPUT and OUTPUT
files.

41 - The number of statements in the original program
that are executed by this test case.

The second record for a test case is a bit map which
indicates which statements are executed by the test case.
The first bit of each word 1is not used so there are 15

usable bits per word. There are 42 records which give a

maximum of 42 x 15 = 630 bits per record. For Cobol

26

programs with more than 630 procedure division statements,
either the record size for the TEST STATUS file will have to
be increased or more than 2 records per test case will have

to be used.

TEST DATA file

The TEST DATA file is a sequential file that contains
the 1input and output for each test case. The Cobol input
for all the input files used by the original source program
is stored in sequential order in the TEST DATA file followed
by the output files generated by the original source program
for a test case. The information for additional test cases
is stored in the same manner following the existing data.
The data 1is stored in a packed format by SUBROUTINE PACK.
This packed format contains a character followed by a count
of how many exist together; if a character is not repeated
in the file, then it has no repeat count associated with it.
An initial segment of the ASCII codes represent unprintable
characters. Values 1in this initial segment are treated as
repeat counts. The subroutine PACK breaks up 1long repeat
strings in order to keep repeat counts within bounds.
{Note: For portability, EBCDIC also has an initial segment
of nonprintable characters). The reason this packing is
done with repeat counts is to save storage space, The
character and its count are stored in half-words of one byte

each.

e) i |J

I [N
A PRGN T R e ——" o

T T TAT MTITIY s T ey e

MUTANT STATUS FILE

The MUTANT STATUS file is created by appending .MS to
the filename of the progrém being tested. This file
contains status information about the mutants concerning the
mutant types that have been turned on; the number of mutants
created for each mutant type; a pointer for each mutant type
to the first record in the MUTANT RECORD file; the number of
'live' and ‘'dead' mutants; and the number of mutants that
are 'killed' by each of the eleven errors detected by the
interpreter.

The first record on the MUTANT STATUS file contains a
count of the total number of mutants created. This count is
in the first word of the 16 word record. The next several
records contain header information for each mutant type.
The header uses four words to store 1its information; the

header format is:

Psition Use

1l - Mutant type.

2 - On or off
0 - off
l - on

3 - 0On or off this run
0 - off
l1 - on

Location in the MUTANT STATUS file for the
status block.

>
|

The MUTANT STATUS file has 16 words per record. This
means that four headers can be placed in one record; since
there are currently 25 mutant types, 5 records are needed to

store the header information. The information contained in

————— =

28

the header blocks is resident in core during the CMS.1 run.

For each mutant type there is one record that contains

the mutant status information. The information and the

format for a mutant status record is:

Position Use

1l - Number of mutants for this type.

2 - Number of words for the bit map.

3 - MUTANT RECORD file location for the first mutant
record of this type.

4 - Number of live mutants.

5 - Number of dead mutants.

6 - Number killed by trap, attempt to execute beyond
the end of code by the STOP statement being deleted
or no SIZE ERROR clause given and a size error
occurs.

7 - Number killed by time-out.

8 - Number killed by data fault.

9 - Number killed by initialization fault,

10 - Number killed by I/O fault in OPEN or CLOSE.

11 - Number killed by attempt to read past end-of-file.
12 - Number killed by writing more than original program.
13 - Number killed by output too large for the buffer.

14 - Number killed by array subscripts out-of-bounds.

15 - Number killed by incorrect output.

16 - Number killed by garbage in the CODE array.

Following these records are the bit maps for the 1live,

dead,

and equivalent mutants, where there is one bit for

each mutant. 1In all of the bit maps the first bit (sign

bit) of each word is not used. The bit maps are of varying

length depending on the program and on the mutant operators.
The number of records needed for a bit map is rounded up to
the nearest whole-record size. There are four words per
record with 15 usable bits per word, thus, there are 60 bits
per record and the number of records necessary to store a
bit map is the next largest integer greater than the number

of mutant divided by 60 bits per record.

MUTATION RECORD FILE

The particular mutant types that have been implemented
in CMS.1 are data, input/output, control structure, and
procedural mutations. Data mutations alter the data
descriptions contained in the SYMBOL TABLE. INPUT/OUTPUT
mutations deal with changing a file reference in one read or
write statement. For example, an input file may be ex-
changed for another input file in a read statement, or an
output file exchanged with another output file in a write
statement; but an input may not be exchanged with an output.
Control structure mutations alter statements that deal with
program flow. Procedural mutations are those mutations
which are applied to procedure division statements.

The mutant record file consists of n records, where n
is the number of mutants created for the program. Each
record is 4 integers long. All the mutant descriptors for a

mutant type are stored contiguously in the mutant record

30

file. The first word is the mutant type and the other three
contain information for that mutant type. A mutant record
exists for each mutant that can be applied to a program.
The following is a list of the mutants and their descriptor
records (an x in any field means that that field 1is not
used). All mutants that alter a statement are copied at the
end of the code array and the code reference in the
statement table is changed to refer to this mutant
statement. To restore the internal form after implementing
a statement mutant we only need to change the statement
table code reference to refer back to the original
statement. Data mutations alter the data descriptions to
the original statement. The following is an explanation of
the mutant types that are implemented in CMS.1.
1 Decimal alterations move implied decimal in numeric items
one place to the left or right, if possible.
<DEC><SYMBOL TABLE location><+l | -1><x>
Where +1 - add 1 digit to the fraction part,
-1 - subtract 1 digit from the fraction part.
2 Reverse occurs clauses reverses the row and column size in
a two-level table.
<REVERSE-OCCURS><SYMBOL TABLE location><x>
<SYMBOL TABLE 2>
3 Alter occurs clause changes the dimension of a one- or
two-level table by adding or subtracting 1 from the

dimension.

31

<ALTER-OCCURS><SYMBOL TABLE location><code><x>
where code = 0 means "add 1 to occurs",
= 1 means "subtract 1 from occurs".

4 Insert a filler (PIC X) in a record. This mutation is
aided by the fact that the parser inserts a dummy record
between each data item in the symbol table; this was
done so that the references in the code array to the
SYMBOL TABLE will not be affected by implementing this
mutant.

<INSERT><SYMBOL TABLE location><x><x>

5 Change a filler's size by adding or subtracting 1 to its

size,
<CHANGE-FILLER><SYMBOL TABLE location><+l | =-1><x>
6 Reverse adjacent elementary items in a record. This is

accomplished by reversing the memory pointer contained
in the SYMBOL TABLE.
<REVERSE><SYMBOL TABLE location>
<next elementary location><x>
7 Input/Output reverses two file referenceds for input files
or for output files.
<FILE><statement><x><new file-code>
8 DELETE mutant deletes a statement from the program by mak-
ing it a NO-OP., This mutation checks for the necessity
of a statement.
<DELETE><statement><{x><x>

9 GO-TO changed to a PERFORM statement is implemented by

it o

changing the opcode.

<GO-PERFORM><statement><x><x>
10 PERFORM changed to a GO TO.
<PERFORM-GO TO><statement><x><{x>
11 THEN-ELSE clause reversal is implemented by negating the
condition. A special opcode, NIFQP, was created for im-
plementing this mutant.
<THEN-ELSE><statement><x><{x>
12 STOP replacement mutation consists of changing a
statement to a STOP statement to verify the necessity of
a statement's existence.
<STOP><statement><x><x>
13 THRU clause adjustment extends the range of a PERFORM
statement. <THRU><{statement><new paragraph><x>
14 TRAP statement mutation consists of inserting a TRAP
statement into the program after possible transfer
points for path analysis.
<TRAP><statement><x><x>
15 ARITHMETIC OPERATION SUBSTITUTION changes one arithmetic
verb for another. For example, change ADD to SUBTRACT.
<ARITHMETIC~1><statement><new operation><x>
16 COMPUTE OPERATION SUBSTITUTION exchanges an operand in a
compute statement.
<ARITHMETIC-2><statement><field><new operation>

where 'field' 1is the relative location in the code

description of the operator to be changed.

<t CMdoninb i P = 25 btk - skent o i -
T At e e —_ B R e e . . . e e m——— == e e i mme e s — penpd -

’
i 33
j Py 17 PARAMETER ALTERATION is used in COMPUTE statements to
% change the ©position of a parenthesis by moving one ;
3 parenthesis one place to the left or right. |
'% : <PAREN><statement><from-field><to-field> ?

where the 'from-field' is the relative location in
the code description of the parenthesis in the COMPUTE
statement being altered and the 'to-field' is the 1loca-
tion to which the parenthesis is to be moved.
+8 ROUND mutation turns the 'rounded' condition on or off in
an arithmetic statement; ROUNDED is changed to trunca-
tion and vice versa.

<ROUND><statement><x><x>

T

19 MOVE mutation reverses the direction of the MOVE opera-

tion when only two fields are used, if such a reverse
would be a legal Cobol statement. For example,
MOVE DATA-1 TO DATA-2., changed to

MOVE DATA-2 TO DATA-1.

<MOVE><statement><x><{x>
20 LOGICAL OPERATOR REPLACEMENT is implemented by changing a
logical operator to a different logical operator.
<LOGIC><statement><field><new value>
where 'field' is a relative 1location in the <code
description for the logical operator being altered.
21 SCALAR for SCALAR replacement changes the reference from
one scalar to another scalar in a statement.

{SCALAR-SCALAR><{statement><field>

b Al Mg o DA 5 LA 0 . ik B 1B e

34

<new SYMBOL TABLE location>
where 'field' 1is the relative 1location 1in code
description.
22 CONSTANT for CONSTANT replacement replaces one reference
to a constant with another constant reference.
<CONSTANT-CONSTANT><statement><field><new location>
23 CONSTANT for SCALAR replacement.
<CONSTANT-SCALAR><statement><field><new location>
24 SCALAR for CONSTANT replacement.
{SCALAR-CONSTANT><statement><field><new location>
25 CHANGE CONSTANT mutant 1is used to <change a numeric
constant by +1%, -1%, +1, or -1 whichever is largest.
To ease the implementation of this mutant, ‘'mutant'
values for each numeric constant have been inserted in
the SYMBOL TABLE right after the constant has been
inserted during the parse.
<CHANGE-NUMERIC-CONSTANT><statement><field>

<new location>

LOG FILE

The LOG FILE is used to contain important information
about a CMS.1 session. This file is a sequential file which
can have some of its contents determined by the user (e.g.
by issuing an OUTPUT command) . The CMS.l system
automatically stores some information in the LOG file. Dur-
ing the PRE-RUN phase a copy of the Cobol source program is

placed in the file. For each test case, the input file is

i, I, LT PP

stored with the result for that test case; the results are

TEST CASE FAILED, TEST CASE REJECTED, and TEST CASE # ENTER
AND ACCEPTED. During the MUTATION phase a 1list of the
mutant types that are currently enabled is stored in the LOG
file. The POST-RUN phase stores the status information for
the pass. If the user marks any mutants equivalent, then
the number marked is stored in the file. The user may have
a list of the live mutants stored in the file or a 1list of
the test cases stored by specifying the OUTPUT command. If
the user aborts the run by issuing a KILL command, then he
is asked to enter a message explaining the reason for abort-
ing the run. This message is terminated by a control-C and

is placed in the LOG file.

36

CHAPTER III

EXPERIENCE

Cobol Example

The following is a script of a CMS.1 run on a program

originally from the Army SIDPERS personnel system. The
program has been modified somewhat, mainly in the reduction
of the record sizes to make a better CRT display. The
program takes as input two files, representing an old backup
tape and a new one. The output is a summary of the changes.
The input files are assumed to be sorted on a key field.
The program has 1195 mutants, of which 21 are easily seen to
be equivalent to the original program. 1Initially ten test
cases were dgenerated to eliminate all of the nonequivalenc
mutants. Subsequently a subset of five test cases was found
to be adequate for the task. The entire run took about 10
minutes of clock time, and 2 minutes and 13 seconds of CPU
time on the PRIME 400.

The following is an example of the CMS.1l run. User in-
put has been entered in lower case to distinguish it from
the system instructions and prompts. This is the interac-
tion at the pre run phase where the user has requested the

program being tested be displayed at the user's console.

LTV NPT
re amebadie femat i y 4 N

37

WELCOME 7O THE COBOL PILOT MUTAYION SYSTYEW :
PLEASE ENTER THE NAVE OF THE CDIOL PROGRAW FILE:>log-changes

DO YOU JANT TD PURGE WORKING FILES FOR A FRESH RUN ?>yes

PARSING PROSRAM

SAVING INTERNAL FORY

WHATY PERCENTAGE OF THE SUISTITUTION SUTANTS DO YOU WANT TO CREATE?>1))
CREATING MUTANT DESCRIPTOR RECORDS

PRE“RUN PHASE

DO YOU WANT TO SUBMIT A TEST CASE Y >drogrem §

PROGRAY LASTY CONPILED ON 1 11 80,

1 IDENTIFICATION DIVISION. :
2 PROGRAM-1D. POJAAACA. i
3 AUTHOR, CPT R o MOIEMEAD,

& INSTALLATION, HGS JSACSC,

5 DATE=JRITTEN, OCT 1973,

[RENARKS .,

7 THIS PROGRAY PRINTS OUT A LIST OF CHANGES IN THE ETF,

8 ALL ETF CHANGES WJERE PROCESSED PRIDR TO THNIS PROGRAW, T4t

9 OLD ETF AND THE NMEJ ETF ARE THE INPUTS, BUT THERE 1S w0

10 FURTHER PROCESSING OF TME ETF NERE. TMF ONLY DUTPUY 1§ &

11 LISTING OF THE ADDS, CHANGES, AND DELETES., THIS PROGRAM]S

12 FOR M3 USE ONLY AND HAS NO APPLICATION IN THE FIELD,

13 (YT R TT R TTY E T)

1% NODIFIED FOR TESTING UNODER CPMS BY ALLEN ACREE

15 JULY, 1979,

16 ENVIRONRENT DIVISION.
17 CONFIGURATIIV SECTION,
10 SOURCE~CONPUTER, PRINE.,
19 OBJECT-COYPUTER. PRINE.
23 INPUT=-0UTPUTY SECTION.
21 FILE~CONTROL.

22 SELECT OLD-EVF ASSIGN INPUTY,
23 SELECT NEW~-ETF ASSICN INPUT2,
24 SELECT PRNTR ASSIGN TO OUTAUTY,

25 OATA DIVISION.
26 FILE SECTION.
27 FD OLD-ETF

e

28 RECORD CONYAINS 8] CHARACTERS
29 LASEL RECORDS ARE STANDARD
30 DATA RECORD 1S OLD=REC.
39 09 OLD-REC.
32 D3 FILLER PIC X.
13 03 DOLD-KEY PIC X€12).
34 03 FILLER PIC X(57),
55 FD NEJ~ETF
35 RECORD CONTAINS 8D CHARACTERS
37 LABEL RECORDS ARE STANDARD
38 OATA RECORD 1S NEd-REC,
k14 01 NEJ-REC.
40 03 FILLER PIC X.
(1) 03 NEW=CFY PIC %(12).
&2 03 FILLER PIC X(67).
43 ¥D PRNIR
o RECORD COMTAINS 40 CMARACTERS
[} LABEL RECORDS ARE OWITTED
46 DATA RECORD 1S PRNT-LINE.
(%4 01 PRNT=LINE PIC X(6D),
48 SORCING~STORAGE SECTION,
(1] 01 PRNT<WORK=AREA.
$3 03 LINE? PIC X(3D).
S1 93 LINE2 PIC X(3J).
$2 03 LINES PIC R(2D).
ss DY PRNY-OUT=OLD.
Sé 03 WS~LN=1,
b3 0S5 FILLER PIC X VALUE SPaCE,
58 05 FILLER PIC XXXX VALUE °*0 °,
b 24 05 ™ PIc X3,
11 05 FILLER PIC XXX VALUE SPALES.
59 03 wS-LN-2.
42 05 FILLER PIC X VALUE SPACE.
61 05 FILLER PIC RXXX VALUE ‘L °*.
62 0S LwN2 PIC X(30).
63 05 FILLER PIC XXX VALUE SPACES.
84 03 wWSeLN-3,
[1] 03 FILLER PIC N VALUE SPace,
: 66 05 FILLER PIC XXXX VALUE 0 . 4
' 87 05 LnS PIC X€20),
(1} 0S FILLER PIC XXX VALUE SPact.

145
dyes

01 PRNT-NEW=0UT.
03 NEW-LN-Y,

0S FILLER PIC XXXXX VALUE * N

35 Netw? fre x(30).

DS FILLER PIC XXX VALUE SPACE.
03 NEW=LN=2,

35 FILLER PIC XXXXX VALUE * E

0S N-LN2 PIC x(30).

DS FILLER PIC XXX VALUE SPACES.
03 NEW-LN=3.

0% FILLER PIC XXXXX VALUE * o

05 WN-LNS PIC x€20).

08 FILLER PIC XXX VALUE SPACES.

PROCEDURE DIVISION.
01033-0PENS.
OPEN INPUT OLD=ETF NEN-ETF,
OPEN DUTOUT PRNTR,
0113-0L0=-READ.
READ OLD=EYF AT END GO TO J150-0LO-€0F.
0120-NEW=READ.
READ NEW-ETVF AT END GO TO 0170~NEW-EOF,
0130=-COMPARES.,
1F OLD=KEY = NEW-CFY
NEXT SENTENCE
FLSE GO TO D014)=CK-ADD=DEL,
1f OLO-REC = NEW-REC
60 Y0 J11J)-~OLD-READ.
MOVE OLO-REC T2 PRANT-WORK=AREA.
PERFORW (3240~0LD=4RT THRU 221D=-EX1T,
MOVE NEWJ-REC T) PRNT-UORK=ARER,
PERFORM I2D0-NA=JRT THRY J2I0-€X1T.
GO 10 0110-0LD~READ,
014)=-CX~-ADD~DEL,
1F OLD-KEY > NEW-KEY
WOVE NEJ=REC TO PRNT=WIRC=AREA
PERFORM 02DO~NW=WRY THRU 0200-TX1T¥
GO 10 0120~NEJ=READ
ELSE 60 TO D0150-Ck=ADD-DEL.
J315)~-CK=ADO~DEL.
MOVE OLO=REC TD PRNT=WORK-AREA,
PERFORM (210-0LD~WRY T4RU 0D210-EXIT,
READ OLD-ETF AT END
MOVE NEd-QFC TO PRYT~WIRK~AREA
PERFIRW 0200-Ve-WRT THRU 0200-€X1YV
G0 19 0160-0LD~EOF,
GO TO J3930-COMPARES,
01460=0LD-E0F .
READ NEW-ETF AT END 60 TD D180-£0J.
MOVE NEW=REC TO PRNT=WORK=AREA,
PERFORY 0233-N4=dRT THRU D2JJ~EXIT,
60 70 J16)~0LD-E0F.
O170~NEW-EOF.
MOVE OLD=~REC TO PRNT=WORK=AREA.
PERFORM 0210-0L0=4RY THRU J210-EXIT,
READ OLD~ETF AT €NO &0 TO J180~-£0J.
G0 YO 0170~NEW-EDF.
018D~E0J.
CLISE OLD-ETF NEJ-ETF PRNTR,
STIP RUN,
J203~NW=WRT,
WOVE LINET TO N=LNIY,
WIVE LINE2 TO V=LN2,
SOVE LINES TQ N-LN3,

WRITE PRNT=LINE FROY NEW~LN=Y AFTER ADVANCING 2.
MRITE PRNTSLINE FROYW NEWJoLN=2 AFTER ADVANCING 1,
NRITE PRANT-LINE FROS NEd=LN=3 AFTER ADVANCING ?,

923)-€x17,
EXIT,
0210-0LD=JRT,
MOVE LINEY TO LNV,
MOVE LINEZ TO LN2.
MOVE LINES T0 1LN3,
WRITE PRNT-LIVE FROW WS-LV¥~1 AFTER ADVANCING 2,
WRITE PRNT=LINE FROY WS-LN~2 AFTER AOVANCING Y,
WRITE PANT=LINE FRO® WS-LN~3 AFTER ADVANCING 1,
0210-€¥17,
Ex1T,

38

F's Now, the user is asked to enter a test case. cvs.1
ssks for each Cobol insut file by name. The input files and
the results are disolayed for the user at his consdle. A
p test case for this program is a pair of dnput files. In
CMS.1 these may be created outside the system and referenced

by file name, or may pe entered "on the fly” during the ses-

. sion.

WHERE 1S OLD=-ETF?
>ic9
WHERE IS NEW-ETF?
>led
OLD~ETF PROVIODED YO THE PROGRAM ‘

1123456789012 111112 IT0JJJJ0JIJIKKRRKCRKERRKLLLLLLLLLLNNNNNNYRNYAREII3938856635S
J23456789)123YYYYVYYYYYGEoGGGSCCGFFFFFFFFFFODODODDODDSSSSSSSSSSXXXXXXXXXXEEEEE

NEW-ETF PROVIDED TO THE PROGRAM
1133456783012000009000050093000090003000000000000000000000000000002033300029230 L
2364567893123V YYYYYYYYYGGEGGGEGCGFFFFFFFFFFDODDODDODDSSSSSSSSSSXANAXXXKXXEEEEE

345678931236 UVUUVBUUVUUHAHRMMHHN4E06ES0CSCDDODDDDDDDSSSSSSSSSSEREZECEZEEANA R

PRNTR AS JRITTEY BY THE PROGRAM

T12345678901211111111110JJ44039

JIIKKKKKKKKKKLLLLLLLLLLNNNNYAN
NYV833383388356566663

~o

113345678901200000050000000000
000050000000300000000200300000
00003000000020000000

J234567890123YYYVYYYYVYSECG56G
GGCFFFFFFFFFFODDODDDDDDSSSSSSS
SSSXXXXXXXNXXEEEEEEE

J234567390123YYVPYYYYYVYGEEEEEE
CSCFFFFFFFFFFODDODDODODSSSSSSS
SSSXXXXXXXXXXEEEEEEE

v

345678701234 VUUUVUUUUUNHNHNNN
HHHEEEEEEEGCEODDDDDDDDDSSSSSSS
SSSEEEEEEEEEEAAAAAAA i

ama ams Ooro KMm&E o

THE PROGRAN TOOK B84 STEPS
1S THIS TEST CASE ACCEPTAILE ? dyes
00 YOU WANT TO SUBNIT A TEST CASE ? >no

4D

The following dis the interaction necessary during the
mutation phase, The user must indicate which mutant tyoe

prograws are to be executed.

MUTATION PHASE
WHAT NEV MUTANT TYPES ARE TO OE COVSIDERED 7 >select

ENTER THE NUNBERS OF THME WUTANT TYPES YOU WANT TO TURN ONM AT THIS TI%,

4 INSERT FILLER TYPE eeee

S FILLER SIZE ALTERATION TYPE eees

6 ELEMENTARY ITEM REVERSAL TYPE eeee

7 FILE REFERENCE ALTEATION TYPE seene

] STATEMENY OELETION TYPE seeos

10 PERFORM «=> 50 TO TYPE enen

1 THEN = ELSE REVERSAL TYPE weoee

12 STOP STATENENT SUBSTITUTION TYPE esee
13 THRY CLAUSE EXTENSION TYPE oseee

14 TRAP STATERENY REPLACEMENT TYPE wenee
19 MOVE REVERSAL TYPE eree

20 LOGICAL OPERATOR REPLACENENT TYPE @eaee
21 SCALAR FOR SCALAR REPLACEMENT eeee
22 CONSTANT FOR CONSTANT RFPLACEMENT wees
23 CONSTANT FOR SCALAR REPLACEWENT esee
es CONSTANT ADJUSTVENT seee

TYPES ? >4 t> 14 stoo

The 093st run phase disolays the mutant status as a
result of the test cases currently defined. The Jser is
given the opoortunity to see the Ltive mutants and the
ejquivalent mutants during this phase and must indicate i°?
the session is to be continued or not. For this exanote,
the user soecified the 'Loop' ootion so that the (™S s=ssicn

will continue,

~== TESTCASE 1 ==~

250

284 CONSIDERED 224 XILLED 60 REWAIN
WUTANT STATUS
TY2€ ToTAL LIVE 434 (1134}
INSERT 61 14 82.93 0
FILLS2 38 14 63.16 9
ITEWRY 21 0 100.00 J
FILES H 1 83.00 3
OELETE 54 13 75.93 0
PER GO 14 2 71.43 J
IF REV 3 1 66.57 b
STIP 53 10 81.43 b]
T™HY 8 2 75.00 J
TRAP 54 1 81.48 J
TOTALS

284 62 78.87 0

DO YOU JANT TO SEE THE LIVE RWTANTS?Ono

DO YOU JANT TO SEE THE EQUIVALENT WUTANTS?>no
dOULD YOU LIKE TO SEE THE TEST CASES?>nd

LI0OP OR MALT ? >loop .

41

] The user has indicated that the session is to continue.
PRE-RUN PHASE
DO YOU JANT TD SUBNIT A TEST CASE ? >yes
WUNERE IS OLD-ETF? 1
>le1S
WHERE 1S NEW-ETF?
>leS ;
OLD=EYF PROVIDED TO THE PROGRAR

Pi 0000000000042 111113 IJJJ)JIIJIIKKRKKRKRRRKLLLLLLLLLLNNNNNNNNNNBBBR33393886666G6
1123456789012 1111211140000 J0JJIKKKKEKKRKKLLLLLLLLLLNNNNNNNNNKOBO3D3B3IBBCEGEE
3234567890123V YYYYVYYYYGGEEOCGCCCFFFFFFFFFFOODDODDODDSSSSSSSSSSAXXKNIXXKNEEEZE

NEV=ETF PROVIDED YO THE PROGRAN

T123456789012 1111111144004 03J3IKKRKKKKRRKLLLLLLLLLLNNNNNYNNNNBBD3D3339B66G3S
J234567890123YYVYYYYYVYVGIGAGGSGEGFFFFFFFFFFODDDDDDDDDSSSSSSSSSSRXXRXXXKXXEEEEE

PRNTR AS WRITTEN BY THE PROGRAM

0 0000000000121 1X1111111JJJ4344
L JJIKKRRKKKKKKLLLLLLLLLLNYNNYNN
] NNNDIBBABBBBRIGEEEGES

THE PROGRA™ TOOK &4 STEPS

1S THIS TEST CASE ACCEPTASLE ? >yes

09 YOU JANT TO SURMIT A TEST CASE ? >yes
WNERE IS JLD-ETF¢?

>teté

WHERE 1S WEW-ETF?

1 >Lc$S

OLD=ETF PROVIDED TO THE ®ROGRAM

E !123‘567.90121I!llllllIKJJJJJJJJJ;;KKKKK!KKLLLLLLLLLLUNUUNNNﬂIUBBB!339!8!5:GSG
J234567890123YYVYYYYVYYYCGGCECECCCFFFFFFFFFFDDDDODODDDSSSSSSSSSSXNXXXINXXXEEEEE

aag,

4 NEJ~ETF PROVIDED YO THE PROGRAM

JY2345678901212I3II1121JJJJ000JIIRKRRKKRKERKLLLLLLLLLLNNNYNNNNNNSBB3I3933356655
J234567890123YYYYYYYYVYGCCECCCGCCFFFFFFFFFFODDDDPDODDDSSSSSSSSSSXXXKNKXAXXEEEEE

PRNTR AS JRITTEN BY THE PROGRAW

1123656789012 111112311KIIIIII
JJICRKEEKKKKKLLLLLLLLLLNNNNNNN
NNNDBBI3PBABBAGECEGEEE

11234567830121112111X11003040)
JIIRKKRKKKKKKLLLLLLLLLLNYNNNNN
NNNDOYOBBBRBRGEEEEES

cme oroe

THE PROGRAN TOOK 48 STEPS

IS THIS TEST CASE ACCEPTAILE ? >yes

00 YOU WANT TO SUBNIT A TEST CASE ? >yes
WHERE 1S OLO-ETF? 1
>le1 /
WHERE 1S NEW-ETE?

el

OLO=ETF PROVIDED TO TWE PROGRAM

00000000000000000000000020000000000000000000
NEJ-ETF PROVIDED TO THE PROGRAM

i 3923456789092 1131 0211240J33030JIRRRRKEKKRRKLLLLLLLLLLNNNYNNNNNNDBDESISIDIGEGCEE
k H J234567890123YYYYYYYVYVECGEGCCCCCFFFFFFFFFFDODOODDODDSSSSSSSSSSAXXXNRRXKXEEEEE
b 345678901234UVVUSUUUUURNNNHNNINHNEEEEECEEEEODIDDDOODDSSSSSSSSSSEEEEEEECEEAAAAA

PRNTR AS JRITIEN BY THE PROGRAN

0 000000000000000000000000000000
00000000000000

19234567890121113811111044443J
JIICKRKKKEKKKLLLLLLLLLLNYNNNNEN
NNNSB333833B0666566C

L
]
L}
€
[

42

J23458789D123IYYYYYYYYVYYGEG6G56
SGGFFFFFFFEFFODODODODDODSSSSSSS
SSSXXXNXXXXXEEEEEEE

36455789D1234UDUVVVUUUUDHNHHHAHH
HHNGEG665666660DDODDODDDSSSSSSS
SSSEEEEEEEEEEAAAAAAA

CME gz

THE PROGRAM TOOK 64 STEPS

IS THIS TEST CASE ACCEPTAILE ? >yss
00 YOU JANT YO SUBMIY A TEST CASE 7 d>yes
WYERE IS OLD-ETF?
>let

WHERE IS NEW-ETF?
>lelt

OLY=ETS PROVIDED YO IWE SROGRAP

T1234567890121 3111111053403 0JIIKKKKKKRKKKLLLLLLLLLLNNNNANNNNNESB333398360666
J234567890123YYYYYVYVYYG5GE5GRGESFFFFFFFFFFOODDDDODDDSSSSSSSSSSXXNRNINXXNEEEZE
3465678901234V VUUUVUUYUHHHHHNHNNNGEG656GGEG60DDDDDPDODDSSSSSSSSSSFEEEESEEEEAAAAA

NEVW-ETF PROVIDED TO THE PROGRAM
03200030020000000033000230030000330020000000
PRNTR AS JRITTEN BY THE PROGRAY

000000000000000000000000000000
00002000000003

11234567890121111X11118343404J
JIICKRKKKKKRKLLLLLLLLLLNNNNNNN
WNNDDPBBSBABBBGEEEEEES

J234567890123YYYYYYYVYYYERELECEE
BGCFFFFFFFFFFDODDDODDDODSSSSSSS
SSSXXXXXKXXXXEEEEEEE

345678901234 UBUUVUUUUUHNNNHNH
MHNEEEEEEGECE00DDODODDDODSSSSSSS
SSSEEEEEEEEEEARAAANN

oroe oro eoro [L

THE PROGRAM TOOK 64 STEPS
IS THIS TEST CASE ACCEPTABLE ? Dyes
s 00 YOU JANT T0 SUBMIT A TEST CASE ? >no
QUTATION PAASE
WHAT NE4 RUTANT TYPES ARE TO BE CONSIDERED * Dall

«== TESTCASE 4 ooe
250
$32
750
814 CONSIDERED 640 KILLED 174 REWAIN
i ees TESTCASE 2 ---
234 CONSIDERED 82 XILLED 152 REWAINM
' == TESTCASE 3 ee-
452 CONSIDERED 1 KILLED 159 REMALIN
=-e TESTCASE 4 o=
451 CONSIDERED 61 CILLED 90 REWAIN
o= TESTCASE § o==
90 COVSIDERED 69 KILLED 21 REMAIN
AYTANT STATUS
TYeg TOoTAL LIVE PcT ULV
INSERT 41 3 92.6% 0
FILLSY 38 12 68.42 0
ITENRY 24 0 403.00 d
FILES s 3 103.00 3
DELETE Sé 1 98.15 0
PER 6O ? 0 103.00 0
1F REV 3 3 103.00 0
stop 53 3 123.0) 3
2 THRY s 2 103.00 0
1 TP 5 3 100.00 0
WOV ERr . 13 3 103.0)]
Lo6IC 15 1 93.33 0
SussSsS 704 4 99.43 0
2 suscFC 12 3 100.09 0
3 SUBCFS ss 9 100.0) 0
¢ a0J 12 3 100.0) 0
TOTALS
1098 21 98.09 0

-

o, e e 2z 5 A~

43

[] 00 YOU WANT YO SEE THE LIVE WUTANTS?>yes
THE LIVE SUTANTS

FOR EACH PUTANT : HJT RETURN TD CONTINUE. TYPE 'STOP' To STOP,
TYPE "EQUIV' TO JUDGE THE WUTANT EQUIVALENT,

saes INSERY FILLER TYPE eeee

THERE ARE 3 MUTANTS OF THIS TYPE LEFT.
b 00 YOU WANT YO0 SEE THEWI>yes
A FILLER OF LENGTH OME WAS SEEN INSERTED AFTER
THE ITEW JHICH STARTS ON LIVE 52
1TSS LEVEL NUWBER 1S 3

>
A FILLER OF LENGTH ONE MAS BEEN INSERYED AFTER
THE ITEW WUNICH STARTS ON LIVE S3
ITS LEVEL NUSSER 1S 3
< >
A FILLER OF LENGTH ONME MAS BEEN INSERTED AFTER
THE JTEY WHICHM STARTS ON LINE 69
ITS LEVEL WUSBER IS 3

>

sane FILLER SIZE ALTERATION TYPE weee

TNERE ARE 12 RUTANTS OF THIS TYPE LEFT.
D0 YOU WANT TO SEF THEmM?>yes
THE FILLER ON¥ LINE 58 MAS WAD ITS SIZE DECREMENTED 3Y ONE,

>
THE FILLER ON LINE S8 NHAS HAD ITS SI2E INCREMENTED BY ONE.

>
THE FILLER OV LINE 43 WAS NAD ITS SIZE DECRESENTED BY OVE.

>
THE FILLER ON LINE 63 NAS HAD ITS SIZE INCREWENTED OY ONE.

»
THE FILLER ON LINE 68 WAS NAD 1ITS SIZE OECREVENTED BOY OVE,

>
THE FILLER ON LINE 68 HAS WAD ITS SI2E INCREMENTED BY ONE.

. . >
i THE FILLER ON LINE 73 WAS HAD ITS SIZE DECREVENTED BY ONE,

THE FILLER ON LINE 73 HAS WAD IVS SI2E INCREVENTED BY OVE.

et e s e

THE FILLER ON LINE 77 WAS 4AD ITS SIZE DECREWENTED ®Y OVE.

THE FILLER ON LINE 77 MAS MAD ITS SIZE INCRENENTED BY ONE.

v ey T —— T
v

TNE FILLER ON LINE 81 NAS HAD ITS SIZE ODECRENENTED DY ONE.

F THE FILLER ON LINE 81 HAS NAD ITS SIZE INCREVENTED OBY ONE.

onse STATERENT DELETION TYPE eeee

‘ THERE ARE 1 WUTANTS OF THIS TYPE LEFT.
! 20 YOU WANT 70O SEE THEM?>yes

¢ ON LINE 106 TNE STATEWENT:

}) 60 70 2150~CC-ADD-DEL

« NAS DEEN DELETED.

i . »

oooe LOGICAL OPERATOR REPLACEMENT TYPE eeee

THERE ARE

4 WUTANTS OF THIS TYOE LEFT,

60 YOU WANT TO0 SEE THEW?>yes

ON LINE 102 THE

STATEMENT:

LF OLO-KEY > NEJ~KEY

HAS BEEN CHMANGED

1

IF OLO~KEY NOT < NFW-KEY

>
sees SCALAR FOR

THERE ARE

SCALAR REPLACENENT aves

& RUTANTS OF THIS TYPE LEFT.

09 YOU WJANT Y0 SEE THEW?>yes

ON LINE 129 THE
%IVE
HAS SEEN CHANGED
AOVE

>
ON LINE 129 .TNHE
WOVE
NAS BEEN CHANGED
nOvVE

>
ON LINE 138 THE
MOVE
MAS BEEN CHANGED
MOVE

>
ON LINE 138 THE
NOVE
MAS BEEN CHANGED
WOVE

>

STATEMENT:

LINET TO N=LNT
10:

NEW-REC TO N=LN1

STATEMENT:

LINEYT T) Ny=LwNt

T0:

PRNT=WORK=AREA TO N-LN1

STATEMENT:
LINET TO LNY
To:

OLD-REC TO LN®

STATEWNENT:

LINEY YO LN?

10:

PRNT-WIRK=AREA TO (V1

DO YOU WANT 10 SEE T#AE EJVIVALENT NUTANTS?Ino
JIULD YOU LIKE TO SEE YTME TEST CASES?>no
LODP OR MALT 2 >halt

esee STOP

Testing CMS.1

Several routines from the CMS.l system have been tested

on the Fortran Mutation System (FMS.2). The subroutines
which were chosen comply very closely to ANSI Standard
Fortran.

FMS.2 will accept any ANSI Fortran program

not use complex arithmetic or input/output
[ABDLS]. FMS.2 will accept several subroutines
ing run and will also accept character data as

makes it possible to test CMS.1 routines which

Cobol program and data in character format.

Some

of

which does

statements
for a test-
input which

store the

the machine dependent features that had to be

rewritten were the PRIME Fortran functions 'AND', ‘'INTL'

(interger 1long), 'OR', and 'RS' (right shift). The 'RS'

function can be implemented by simple division; to shift

right n bits divide by 2 to the nth power. The PRIME func-
tion INTL, which converts a 16-bit integer into a 'long' 32-
bit integer, can be deleted because the FMS.2 test was con-

ducted on a 36-bit machine. The Fortran 'AND' function can

be implemented by subtraction and the 'OR' function is im-

plemented by addition, in the context in which they are used

in the tested routines.

In CMS.1 a negative number is coded with a negative

sign placed in the low order byte of the word containing the

last character of the least significant digit, all the 1low

order bytes of the words for the other digits contain a

46

blank. Improvising for the negative sign on the FMS.2
system 1is accomplished by setting a bit in the second byte
of the last word of a number. In FMS.2 a character |is
stored in the most significant byte with the remaining 4
bytes containing a blank. FMS.2 has an UNPACK and PACK
routine that may be used by the user. The UNPACK routine
takes an A5 word format and repacks it into a five word Al
format. The PACK routine reformats 5 words in Al formats to
a single word with an A5 format. The UNPACK and PACK
routines were used in rewritting two of the routines that
use the 'negative' sign. Some of the routines tested on
FMS.2 use the subroutines MAKNEG, which turns the negative
sign mask on; MAKPOS, which turns the negative sign mask
off; or the logical function ISNEG which determines if the
negative sign mask 1is on. These three routines have been
expanded in-line to facilitate implementation on FMS.2. To
code the MAKPOS subroutine it 1is necessary to turn thc
‘negative' bit off, this is accomplished by storing a blank
in the second byte of the word containing the negative sign
(call PACK with a blank in the second word which gets placed
in the second byte of the word). MAKNEG is expanded in-line
by calling PACK with the low order bit of the second word
turned on; this word gets packed into the second byte. When
MAKNEG 1is invoked, the negative sign mask is off. 1ISNEG is
expanded by calling UNPACK and checking to see if the second

word is blank, not negative, or non-blank, negative.

< e A S g W a2 — 25 L T Gl .ot e Bt >t PG 1210 St TN D4 . el 6 =3 G S BN P B i SR 7 L o e i

t Another dependent feature, the S$INSERT command, has

been changed in all the routines to «contain COMMON

155 akati s e e

statements where needed or to insert constants where
! . parameters were used.

The MOVENM and MOVENW routines are believed to be
correct and the testing was done to increase confidence in
the program's correctness. The two programs are shown in ;
Figure 3. Mutation analysis on each subroutine indicates 1
that no errors exist and that the two subroutines are
correct. A listing of each subroutine with 1its equivalent
mutants and the MUTANT STATE information is given in Figure
4, It can be seen that most of the equivalent mutants a e
the absolute wvalue or the never been zero mutant of a
variable; these variables are always positive and never zero
because they are referring to the memory location and length
for either the sending field or destination field 1in the
Cobol MOVE statement and this cannot be negative or zero,
One important note to be made concerns the statement: i

IF (K .EQ. '#') IER=4
This conditional checks for undefined data. 1If the data |is

undefined, the data is moved entirely to the receiving field

before the interpreter 1is halted and an error returned to
the calling subroutine. The conditional statement:

IF (IER .NE. 0) GO TO 9999 as in MOVENW

IF (IER .NE. O0) GO TO 50 as in MOVENM

is located after the Fortran DO loop that moves the data; if

e A it el St ok e Pt - i E 5D RN L o D b <SSO T S L= e D

48

8 A e

; this statement were moved inside the DO loop, then the error
could cause the error return before all the data is moved.

After further consideration, it was decided that evaluating

L R N

the error condition on every iteration is larger than moving
the remaining data to the receiving field. It should be
noted that moving the undefined data to the receiving field
has no effect because interpretation of the program is hal-
ted.
The MOVEED, numeric edited move, subroutine was submit-
ted for mutation analysis because it has not been fully (
tested by conventional means. The program as modified for
FMS.2 is in Figure 5.
The data for this subroutine consists of the following

input and input/output data.
INPUT DATA

SOURCE - INTEGER data that contains the starting location
in memory for the sending field. a

SLEN - INTEGER data that specifies the length of the item
in memory.

SDEC - INTEGER specifing the number of digits in the frac-
tion part of a number. .

DEST - INTEGER data that contains the starting location in
memory for the receiving field.

DLEN - INTEGER data that specifies the 1length of the
receiving data item in memory.

: PLEN - INTEGER that specifies the length of the PICTURE
‘ specification,

PDIG - INTEGER that gives the number of digits in the PIC-
TURE description. C

PDEC - INTEGER specifying the number of digits 1in the
fraction part of the PICTURE.

s Gt AL

LISTING THE PROER)® UM]T “wOVENWY "

20

3
9993

LISTING

20
22

25
»

43

41

43
S0

Figure 3 MOVENW and MOVENM Original Program Listings

SUIRDUTIWF ®rvFNAUISOURCF, SLEV,DEST DLEV)
INTESE® wirFy, v, SU32, SU21, LOIP4I, 1, 1IN,
INTEGFR ST¥T(3,12), CODE(3D), SY¥Taa(1.,%¥)

CYAR PEwORY(428)
INVESER TLEN, DESY, SLEN, SOURCE
IN3UT 0aY2yT LER, ®EVORY

INPUT DLF%, DEST, SLEA, SCURCE
MLEN = DLEV

TFOSLEY. LY. WLEN) ®LEN & SLEN
LIIPHT = (DEST ¢ WLEN) - 1
SY32 = SOURCE = 9

D3 22 SUR1=DEST, LDOPHI

SU32 = SUR2 + 9

K = MEWORY(SUIR)

IF(K LE2, '8%) JFR » 4
PEMDRY(SUBY) = K

TFCIER ,NE, D) GDT0 999%
TF(OLEV LF. ALEN) 307D 9999

I = LONPK] 41

LOOPU] = (BEST 4 BLEN) = 4

00 30 SuR1sl, LBIPKI
PERIRY(SUIT) & ¢ ¢

CONTIVUE

RETURN

END

THE PROGRAW UNIT “MOVENY ”

SUSROUTINE MOVENM(SOURCE,SLEN,SDFC,DEST,DLEN,DDES,TYPPE)

LOSTCAL NECND

IVTEGER X(5), PTYEGD, PTNEGS, ¥, SUBZ, SUB1, LIOPHI, LFND
INTESER LENS, I, lHI, DDECPT, SDECPY, IER, STHI(3,1D)

INTEGER CODE(3J), SYRTA3(1D,%)
CHAR MEWCRY(625)

INTEGER TvoPg, DDEC, OLEN, DESY, SDEC, SLEN, SJucs

IVPUT QUTPUT I1ER, ®EYORY

INPUT YYPPE, DDEC, DLEN, DEST, SDEC, SLEN, SIJRCE

PYNESS = (SOUPCE & SLEV) - ¢
PYNEGEL = (DEST ¢ OLEN) - 1

CALL UNPACC(YE*IRY(PTINESS),X,S)
NEGND = X(2) LE2, *e?

X(2) = ¢

TECNEGND) CALL PACK(X, MEMORY(PTNEES),S)
LENS » SLEN =~ SDEC

LEND = DLEN ~ DDEC

SIECPT s SOUPCE ¢ LENS

DOFCPT = DEST ¢ LEVD

SUBT = DDECPT - 9

JF(SDEC €. O .OR. ODEC .€Ea, O) GO¥D 22
INI = (SDEC * SDECLPY) « 9

IF(DODEC .LF. SPEC) INI = (DDEC ¢ SOLCPT) ~ 1

o0 20 SUB2eSDFC®T, 1M}
Suat = SuP1 ¢ 1

K = WEWIRY(SI2D)

16CC €2, '0?) IER =
®EYORY(SUBY)Y o X

TECIER .NE. D) &0TO SO
IF(DDEC .LE. SDEC) 6OTO 3D
I = SUSt ¢ 1

IHY = (DEST ¢ DLEN) = 1%

09 25 SuB1sI, INI
YEWDRY(SURY)Y = *D¢

LOIPNI = LEWD

TFCLENS .LE,. LEND) LOOPU] = LENS
$U3T = DOECPY

$Y3I2 = SPECPY

IFCLEND LE3. D) S0TD SO
TFCLENS 66, O) SOTD 49

00 4D Ie9, LOOPN]

$Y31 = U3 - ¢

$Us2 = SUR? -~ 1

K & MERQPY(SY22)

1F(K E2, *F°) 1ER e
HEYORY(SYR) =

TSCIER NE. D) GOTO ST
TECLEND LE. LENS) gOT0 SO
Ing = SURY - 1

DD 45 JeDEST, INY
RERIRT(T) = o0

X(2) » ta?

TFONEGNT) CALL ®ACK(X, "EDRY(PTVELS),S?

TRL, V0T, (VEGYO ,AVD, TYPPE _E2, 2)) RETURN

CALL UNPACK(MERDRY(PTINESD),X,S)
XC2) » ot

CALL PACK(X,REYORV(PINESD),S)
RETURN

(L]

R om. ~ — o= T

12
1%

35

43

“8
8

55

9
(]

er

7)
72

1)
82

LISTING TUE PROCRA® UNIT “WOVENS ® WITH SPECIFIED E3JIV wiTaANTS

$755s
$757%

$43s

$43C03
$532%
$7278
$75¢°s
37478
87418
17578
$7668
387658

37678
$7¢3s
$77)s
$772s
$773s
$77%s
$775%
$77R¢

8779
s7%1s
$7%2¢
$7h4s

$7051
8787
8748y
$7308
$832s

$791s
$791s
17948
$7948e

$797s
$799s

$5548
$200s
s8l2s

20

83398
88333
88358
[1.1 .3}

87488
SAPLs

SJIRIUTINE WOVENSCSIURCE,SLEV,DEST, BLEN)

INTESE® ®WLEN, ©, $U32, SU31, LOIPHI, I, IWI, ltw
INTEGEP ST¥T(3,12), COPE(30), SYNTA3(10,9)

CHaR MERMORY(4L25)

INTEGER DLEN, OEST, SLEN, SOURCE

INCUT OUTPJT IER, MEWORY

IV2UT DLEN, OFSY, SLE?, SCURCE

MLEN = DLEYN

FLEN = ABS DLEN
MLEN = IPUSH DLEN

TF(SLEN LY, SLEN) SLEN = SLEN H

TF(SLEN LT, DLEN) ®LFN & SLEN

16¢== SLEN .LT, WLEN) WLEN = SLEN
TF(SLEN LT, ®¢ MLEK) WLEN = SLEN
IF(SLEM .LF. YLEN) WLEW = SLEN
IFCA3S SLEN oLT. WMLEN) WLFN = SLEV
IF(2PUSY SLEN LT, SLEN) WLEV = SLEN
TFC(SLEN LY. ASS WLEN) WLEN & SLFN
TF(SLEN LY. 22USH ®LEN) MLEN = SLEN
TFCSLEN LT, SLEN) SLEN = ABS SLEN
IF(SLEN LT, SLEN) WLEN = ZPJS4 SLEN

LOIPHI = (DEST ¢ WMLEN) = 9

LOJPHI = (ABS DEST ¢ MLEN) = 9
LO2PM] = (7PUSH DEST ¢ WLEN) <~ 1
LOIPHI & (DEST ¢ A3S ®LEN) - 1
LI2PH] = (DEST ¢ 2PUSH HLEN) ~ 1
LOIBHI & A3IS (DEST ¢ PLEN) - 1
L3OV = ZPUSH (DFST ¢ WMLEN) =~ 1
LII2H] = A3S ((DESY ¢ HLEN) = 1)
LYIOHI = ZPUSH ((OEST ¢ SLEN) - 1)

$J32 = SOURCE - 1

$J32 = ABS SOHURCE - ¢
$Y32 = IPUSH $IURCE = 9
§J22 = ARS (SODJRCE - 1)
SU32 = JPUSK (SOURCE = %)

9 20 SURI=DEST, LOOPNI

00 20 SUR1=A3S DEST, LOOPHI
0 20 SU3I=ZPYSH DEST, LIIPHI
0C 20 SUP1=DEST, ABS LOOPHI
00 20 SUR1I2BEST, ZPUSH LOOPHI
FOR 20 SUBI=DEST, LOOPHI

SU32 = SY9s2 ¢+ 9

SU32 = ARS SuB2 ¢ 19
SUB2 = 2PUSH SUB? + -4
SU32 = ABS (Sus2 + 1)
SU32 = TPUSH (SU32 ¢ 1)
K = MEMDRY(SUR2)

kR = BERUIRY(AIS SLE2)
K = WEMORY(ZPUSH SU32)

T6(K €2, *0') JER = & 9

IF(RENIRY(SUR2) .EQ. *@') JER = &
TF(A3S C 62, '#') IER ® &
IFCIPUSY K .EQ, *N') JEQ = &

MEMORY(SURY) = K

REYORY(SUB1) & REWDRY(SUB2)
MEVORY(ANS SUBY) = «
PEMORY(ZPUSH SURY) = ¢
MEYORY(SUST) & 20ySu ¢

IFCIER LNE. D) 60T 9999 A1

JFC(1ES 6T, D) §IT) 9999
TFOTER L NE. D) RETURN

Figure 4 MOVENW and MOVENM Listings With Equivalent
Mutants and Mutant State Information

10

1"

L)]

825641
$7438
LN EL
L3RRS Y
18128
32148
$37%s$

”~r

$315%
sR17s
seq9s
$8230%

.) 5218
: N $823s
i 13248
88248
$827s
$R29S
3 $233s
3 $332s

$833¢
$£35s
$E35s
SR3ts
§£71e
$2313s

33

£239s
88418

9999
$883s

AYTANY

v

ALL

FOR EYPERINENT "NOVENS

TF(PLEY (LE, WLEN) GPrYN 9909

TF(DLENY LE. SLEN) &OT) 9999
TFCOLFN JF3, WMLEY) GOTD 9999
TFERAS PLFY LF, MLER) 39T0 9999
1F(2PUSH DLEY ,LE. WLEN] €010 9999
IFCDLEN LE. A5 WLEN) i0T0 9999
TRODLEY JLF. T7USH MLEN) €013 99990
TE(OLEN oLE. SLFN) RETURY

I = LOOPN] ¢ 1

1 5 A35 LOCPA] ¢

1 = IPUSH LODBNY ¢+ 1

I = APS (LDDPH] ¢ 1)

I & Z22usSH (LOC2KH] ¢ ¢}

LIIF41 » (DEST ¢ DLFY) « ¢

LOJPHI » (43S DEST ¢ BLEN) ~ 9

LOIPNI » (ZPUSH DEST o ODLEN) -~ 1

LOIPH] o (DEST ¢ ABS DLEWN) - ¢

L2IPH] = (DEST ¢ 2PUSK OLEN) =~ 9

LI2PHI = A3S (DEST * PLEV) - ¢

LIIPHI = 2°USH (DEST ¢ DLEN) =~ 1

£ODPH] = A3S ((DEST ¢ PLEN) ~ 1)
=

LOIPHI ZPUSK (C(DEST ¢ DLEN) - 1)

02 32 sueis=], LDOPY]

02 3) Ssupi=ags I, LOOPM]
09 33 SUBI=2PUSM §, LOTPHI
DI 3D SLB1=1, ABS LOOP4]
02 33 SuU3t1=1, 2PUSY LODPH]
03 993 SU3N=l, LIOPH]

£0F 3C SURI=l, LOOFN]
NENORY(SURTY = 0 0

RERQRY(ARS SU3T) = * 2
MESORY(ZPUSH SUBT) = ' ¢

CONTINUE

RETURN

PETURY

END

STATE FOR WDVEWNW

® THIS IS RUN 14

NUMRER OF TEST CASES = 11

NUNBER OF AUTANTS = 893
NUMBER OF DEAD WUTANTS =

NUMBEQ OF LIVE WUTANTS » 0D ¢ 0.0%)
NUNRER OF EQUIV MUTANTS = Rt 8.1Y)

221 (91.9%)

NUWBER OF WUTANTS WHICH OIED DY NON STANDARD PFEANS - 313
NORGALIZED NUTANT RATID 821,0%

NJNBER OF MUTATABLE STATENENTS » F3]

GIVING A MUTANTS/STATEMENY RATLO OF 62.52

MURRFR OF DATA REFERENCES 42
NUMBER OF UNIIUE OATA REFEVENCES » 16

RUTANT TYPES NAVE BEEN ENABLED
Figure 4 cont.

14

1%

16

17

12

19

20

21

51

LISTING T4f P22raa® yu)y “eQypyv * dITH SPECIFIED EAJIV BUTANTS

1456508
346528
345538
$4655%
8465588
$L658s
$4459s
34LE51S

$4052¢
346548
$46558
346578
846588
$4670%
846718
245738

145748
844742

34545
345778
8457398

$4680s
345828

$46%3s
$4585s
845958

£4689s

$4692s
846948
$4695s
$46918s

$47018
8467238
8467348
$4707s
34709

847108
$4712s
847138
$47168
s47188

SUARIITILE OVENM(SOUFCE,SLEN,SDEC,DEST,DLEN,DDEL,1YPOT)
LOS1CAL KE<ND

INVEGER X(S), PINEGD, PINECS, €, SUI?, SUE, LIIPMI, LFwp
INTEGES LENS, I, 34I, DDECFY, SDECPT, IEF, STYI(3,1D)
INTEGER CONE(3D), SYYTan(iL,?)

CHAR WENEPY(425)

INTEGER Tvyeo¢, DDEC, DLEN, PEST, SDEC, SLEN, $3)I3CE

IN®UT OUTPUT 1ER, WEMORY

INSUT TYPP(, DDEC, OLEN, DEST, SOFC, SLEN, SOURCE

PTVESS = (SDUFCE ¢ SLEN) = 9

PINEGS = (A3S SOUPCE ¢ SLEN) ~ 1
PINESS & (ZFUSH SOURCE ¢ SLEVY = 9
PINESS = (SJOURCE ¢ ASS SLEN) - 1
PYINESS = (SOURCE ¢ ZPUSH SLEV) =~ 1
PINEGS = A8S (SOURCE ¢ SLEW) - ¢
PINESS = 2PJUS+ (SOURCLT ¢ SLEV) = 1
OTNEGS = 485 ((SOURCF ¢ SLEN) = 1)
L]

PTINESS ZPUSKH ((SOUKCE ¢ SLEV) - 1)

PINEGD = (DEST ¢ DLEN) « 1

PINEGD = (A2S DEST ¢ PLEN) = 1
PTINEGD ® (ZPUSY DFST ¢ DLEN) - 1
PYNEGD = (DESY ¢ A3S DLEN) = 1
PTNEGD = (DFST ¢ IPUSH OLEN) - 1%
PTNEGE = A35 (DFST ¢ DLEN) = 1
PTNEGD » 2PUS4 (OFST ¢ DLEN) = 1
PINEGD = 485 ((DEST ¢ DLEN) = 1)
L]

PTINFGD 20USH ((DEST ¢ DLEN) - %)

CALL UNPACK(MEWORY(PINESS),X,S)

CALL UNPACK(MEWORY(ARS PTNESS),%,S)
CALL UVPACK(ME%ORY(ZFUSH PYNESS),Y,S)

NESND = ¥(2) ,EQ, °*'=?

NEGND = X(2) .5E. '~
NEBND = ABS Xx(2) .E@, '~*
NEIND = 2PUSH X(2) E3., t'e?

X(2) = 0 ¢
TF(NEGND) CALL PACK(X,"EWORY(PTINEGS),S)

IF(VEGNO) CALL PACK(X,YEYIRY(ABS PTINEGS),S)
TFONESND) CALL PACK(X,WEWMORY(ZPUSH PTINEES),S)

LENS = SLEY = SDEC

LENS = aPS SLEN - SOFC

LENS = 2PUS4 SLEN = SDEC

LENS = SLEN = A35 Sof(C

LENS = A®S (SLFVY =~ SpEL) SR

LEND = BLEN ~ DDFC

LEND = APS DLEN = PDEC
LEND = ZPUSH OLEN = DDEC
LEND = DLEN - A3S ODEC
LEND = ABS (DLEN - ODEC)

SOECPT & SOHURCE ¢ LENS

SOECOY » 485 SOURCE ¢ LENS
SDECPT = 2PUSH SOURCE ¢ LENS
SDEC®T = SOURCE & ABS LENS
SDECPT = ABS (SOURCE ¢ LENS)
SDECPT @ 2PUSH (SOURCE ¢ LENS)

DOECPY = DEST ¢ LENO

DDECPY = ABS DEST & LEVD
DOECPT = ZPUSH DEST o LEND
OOECPT = DESY ¢ AIS LEVD
DDECPT = a4BS (DEST o LEWND)
PDECPT & 2PUSY (DESY ¢ LEND)

Figure 4 cont.

25

23

24

25

25

3

31

32

33

52

L.24

47198
§4721%
$4722%
$47248

845528
$4557%

$47258
847278
1472¢
847374
847313
$4733%
$473%4s8
847353

$4320s
$4543s
84737
$4739s
$47408
$4742%
tL?74g
$4745
$47458
347498

347558
847578
$475¢s
$475"8
$5392s

$47618
267638
847648
$4T65S

347578
847438

822428
$22448
822458
822473
834578
$47708
847728

23

S48
547738
£4775¢
S47768
s47788

$4581¢
850268

SU2Y = BBFCOT = ¢

suae
sust
FHLE]
su3t

A3% POECPY - 4

& JPUSY DDECOPY = ¢
ARS (FPIELPY = 1)
IPLSH (DDECPY « 1)

1F(SDEC

1¢(SpEC .LE. D ,OR,

.£2. D

«J, ODEC .E2, D) 6D7D 22

DOEC .F2, 0) GOTD 22

IF(SDEC EG, O (0K, EDFC .LF. D) rOT) 22

I4] & (SDEC ¢ SDECPT) = 1

Iul
1e1
11
141
14l
Il
141
141

(ARS SDEC ¢ SDFC?Y) -
(2PUSH SDEC ¢ SDEL®T)
(SDEC ¢ A3S SOECOT) -
(SDEC ¢ 2PUSH SDECPT)
ARS (SDEC ¢ SPEC3Y) =
IPUSH (SDEC ¢ SDELPT)

1
1

2§

1

ARS ((SDEL ¢ SDECPT) - 1)
1PUSH ((SDEC ¢ SDECPT) ~ 1)

IF(DDEC LLE. SDEC) INI = (DDEC ¢ SDECPT) =~ 9

TE(ee OOEC LLF. SPEC) INT = (ODEC ¢ SDECPY) ~ ¢

IF(DDEC LY. SDEC) Il « (ODEC ¢ SDEC®T) - 1

IF(A3S DDEC .LE. SDEC) IHI = (DDEC + SDECOT) =
IF(ZPUSH DDEC JLE. SDFC) INI = (DDEC ¢ SPFCOT)
JF(DDEC ,LE, A8S SOFC) IMI & (DDFL ¢ SOEC>Y) -~
S$DEC) J4Y » (DDEC ¢ SPECT)

JFLDDEL JLE. 2PUSY
JF(DDEC JLE. SDEC)
1F(DDEC .LE, SODEC)
1F(DOEC LLE. SOEC)
IF(ODEC JLF. SDEC)
% MORES

09 2] SyUa2=SDECPT, 1M1

IN] = (APS DOEC ¢ SDELPT) -

IN] =
IN]I = CDDEC ¢ A3S SDECPT) =
INL =

(IPuS4 ODEC + SDEC2T)
CODEC ¢ 2PUSH SDEC>T)

t3 20 SU92EASS SPELPY, INHI
D0 20 SURP=ZPUSY SPECFT, IM]
PO 20 SURZ=SDECT, ARS IM]
DO 2] SUR2=SDECET, ZPUSY IM]
F0R 23 SURZESDECPT, IMI

SU3T = SURT ¢ 9

Su31
Su3
Sua1
$U34

R3S SURT ¢+ 1
IPUSH SyY3Y ¢+ 9
ARS (SUR? + 1)

IPUSH (SUBY ¢ 1)

K = MEYORY(SU3I2)

K = afeory(ARS SUR2)
¥ = WERORY(ZPUSH SUS2)

If (<

1F(x
1K
1F(K
1F(K

TF(ZPUSH K K2,

+Ed,

€a. ')
EQ, 'rY)

«EG. "0°)
EQ, '#Y)
TF(NEFORY(SUN2) .EQ.
1F(AYS x .EQ,

1€R
1ER
1ER
1€R

‘) JER = &

OLEN
LENS
SDEC
(1114
'8') IER = &

2ty JER = 4

NEWORY(SU31) = X

'e') JER ® §

PENORY(SUST) = WEMORY(SURQ)
TERIRY(MPS SUIY) = ¢
TWAIRY(IPISH SUBY) = K
CEMDAV(SU31) = A3S K
SEMIRY(SURT) @ 2PUSH K

IFCIER Mg, D) ¢0TD $D

1FC1ER .67, 0) §OTO 80O
IFLIER NF. D) €OTD 4D

Figure &4 cont.

s

&3

LT

34

39

37

39

&)

L1

&2

&é

45

[X4

53

54

22 1F(BDEC .Lt. SDEC) OTo 3O ir 49

$4779% IFCABS DDEC .LE. SDEC) 6OTO 3C
$47328 JFLDDEC .LE. 435 SDEC) 6OTO 30

1 = SU31 + 1 59
$4785% 1 = ABS SU31 ¢ 1 e
SLTR?Y 5 = I2JISW $I9Y & %
$47538 [= a3S (SUI1 ¢ 1)
$4790% I = JPUSH (SU3T1 ¢+ V)
Ul = (DEST * DLEN) =~ ¢ s1
847718 INI = (AR° DFST ¢ DLEN) ~ 9
$4793% IMY = (2°SK CEST ¢ DLEV) - 1
$47741 141 = (DESY o A3S DLEN) « ¢
$4795% J41 = (DEST ¢ 2ZPUSY DLEN) = ¢
$472778 41 = ABS (DEST o DLEN) - 1
847998 141 s 2PUSH (DEST » DLEN) « 9
842708 I<4I = 4BS ((DEST ¢ OLEV) - 1)
842028 I<I = Q2PUSH ((DEST * DLEN) ~ 1)
bn 25 Supis=3, 1IN} s2

s1188s pC 25 SUIIs), PINEGD
$4#238 O 25 Suni=a3s 1, INI
SAROSE 0N 25 SuURtsTPUSKH 1, INX
$48N0As P 25 SURIS], AAS IM]
343308 0O 25 Su31sl, IPUSN IN}
§53738 2 30 SuRi=], 1IN
$50938 ¥OR 25 Suvt=l, lul

25 MEVORYISUBY) = '0° 53

$4809¢ NEWIRY(A3AS SUIT) = 'O
$49118 WEWOIRY(ZPUSH SUBT) = 1)

30 LOOPRYT = LEND 54
842128 LJOOPH] = A8S LEND
1 TFCLENS JLE. LEND) LLGCONHI s LENS 55 5

312932 IFCLEVS .LE. LOOPHI) LOCPHI = LENS

$43598 If(ee LENS LLE, LEND) LOOPH] = LFVS

) $4591¢ [FCLENS LT, LEND)Y LOD?41 ¢ LENS

i 548158 JF(sRS LE'S .LF. LEAD) LOOPYI = LENS
$4%983 JFULENS oLF. A3S LEND) LPOPH] = LFNS

349218 IFCLENS .LE. LEVD) LDDP4I = ABS LENS

Sy3t = dhHEZPY 57

$47243 SURY = APS DDPECPY

$452¢8 S$JBT = IPUSH DOECPT {
SU32 = SHECPY 58

$48278 S22 = ABS SDFCOTY
362298 $UR2 = IPJSH SHECPY

IFCLEND .E2, D) €OTO SO $9 62

$23388 IFCLEND T2, JER) 30T %)
845998 IF(LEND .LE. O) ¢0T0 SO

IFCLENS (€3, 0) 6010 &1 61 €2

$T4A3% IFCLOOPHT B2, 0) €0Y0 41
846068 IFCLENS .LE. D) GOTO 49

00 40 I=1, LI0PNI 63

$14468 DO 40 SOURCE=Y, LOOPKI
$14478 DD 4D SLENY, LIOPH]
$14538 DO &) DLEVs?, LOO®H]
$14538 00 43 SOECw1, LOOPH]
314558 00 4D DOEC®?, LOOPH]
$145,8 07 40 SOECPTsY, LODPNRI
$14578 DD 43 DDECPY=Y, LDOPKI
$1459% 09 &) INJs1, LOOPHI
$14618 09 4D t=1, LOOPYY
$16638 09 &) LOOOHI=q, LOOPHI

eg MNRFe
Figure 4 cont.

$UYIY = Suet - 1

$4033%8 SUBY = ARS SUat - ¢
$4°3Sy SURT = IPUSH SUBT - 9
$4634e SU31 = ARS (SURY - 1)
$4E3¥s SURY s ZPUSH (SUST - 1)

SU32 ® Syn2 - 1
48398 SU32 = AR5 U2 - 9
$6541% SUB? = IPJISH SUR2 - ¢
$4LPL2S SJIP2 = ABS (SUR2 -)
SLELLS SUB2 = ZPUSK (SUB2 - 1)
K = WEMORY(SU3I2)

148453 € = SEWINY(ALS SU3I2)
$48478 « = WENORY(2PYUSH SUBZ)

1F(K ,E3, *#°) IER = 4
$35758 JFC(MEMORY(SURY) LEQ. *#*) IER s &
$4%4FS JF(ARS K FQ, ‘') JFfR = &
$42578 1F{2PUSH K E2, °*#') lER = &
40 PERORY(SUIL) = X
$36°88 VWEMDRY(SUBY) = WMEWORY(SUS2)
$45518 ®wEMORY(APS SUBT) = K
$4953s PEMORY(ZPUSH SU3T) = K
$48568 WEWORY(SUR1) = TPUSH <
IFCIER . NE. D) 6270 SO

$462%8 IFCIER .67, D) GOTO 57
$5050¢ IFCIER .mE. D) 6OTD 20

1F(LEND LE. LENS) &OTOC ST

$17438 I1FCLEND .LE. LOOPHI) $DT70 59
$45578 1FCA3S LEND JLE. LENS) EDTD 51
369598 IF(2ZPUSH LEND .LE, LENS) GOTD SO
3485735 IFC(LEND LE, A3S LENS) GOTD 5]
$4852% IFCLEND .LE. ZPUS4 LENS) 6OTO0 S50

[3] INl & SUet -~ ¢

$4%438 I41 = ABS SUSY - 19
848558 T4l = ZeysSH SU3T - ¢
$LR568 T4l = ABS (SUIY - 1)
t405%8 M1 = 2PUSH (SUSY - 1)

DY 45 I=DEST, INM]

$4859% 0O 4S5 I=aA3S DEST, IMI
$45718 02 45 IsIPUSM DEST, IMI
848728 0O 45 1sDEST, ABS IN]
$487468 DO 45 IsDESTY, IPUSH IMI
£5391% 00 5D IwDEST, 141
$5595% FOR 45 I=DEST, Inl

[}] “ENORY(]) = O

“ 3483758 NEWORY(AIS 1) = D¢
848778 QENORY(ZIPUSH 1) = *D°

b1] X(2) s ta?
TF(NEGND) CALL PACK(X,"ENORY(PTINEGS),S)

S48788 IF(NEGNO) CALL PACK(X,WENORY(ADS PTNECS),S)
$48808 JF(NEGNO) CALL PACK(X,WEWORY(IPUSNH PTNECS),S)

TFC.NOT, (NESHD AND. TIPPE €2, 2)) RETURN

848818 IF(.NOT, (NESND .AND. ADS TYPRE _EQ. 2)) RETUIN
848838 IF(.NOT. C(NEGND JAND. ZPUSH TYSPE E3. 2)) RETUIN

CALL UNPACK(WFMORY(PTNFGD),X,S)

$S78 CALL UNPACK(WEWIRY(PINEGD),X,4)

825808 CALL UYPACCC(WEMORY(PTNESD),X,$DEC)
$2572%8 CALL UVPACK(REMORY(PTNEGD) ,X,TYPPE)
830158 CALL UNPACK(NEMORY(PTNEGD),K, V)
8301638 CALL UVPACCC(WEMDRY(PTYNESD) X, D)
S804 CALL UVPACC(NEMORY(ABS PTNEES),X,3)
46868 CALL UNPACKCRENORY(ZPUSH PTNEGDH),X,3)

. BerPu: L Qe - . . veesamt o OF . . - -

Figure 4 cont.

M T ST Y 47 b - e

56

83
2(2) = t=?
25938 X(TYPPE) = Pt
CALL PACK(X,MEWORY(PTNESD),S) L1
48878 CALL PACK(X,WECDRY(ADS PINEGD),S)
$48893 CALL PACK(X,WEMORY(2PUSKH PTNEGD),S5)
RETURN RS
END
QUTANT ELIMINATION PPOFILE FOR WOVENM
WUTANT TYPEg TCTAL DEAD WIvE E3yIV
CONSTANT REPLACEWMENT 66 63 9.4y] 0.9% 1 1.4%
SCALAR VARIAQLE RECLACEME 1920 1906 99,32 3 J.7% 14 0.?%
SCALAR FDF CONSTANT REP, $3C 622 IR.7Y b).)R L 1.3~
CONSTANT FOR SCALAR REP., 331 331 130.3% 3 J.0% 2 3.0
SOURCE CONSTANT RFPLACEVE 102 100 95.0Y) 0.3% 2 2.0%
ARRAY REFf, FOR CONSTANT R 179 179 100.0% b] 0.0% J S 4
AQRAY REF, FOR SCALAR REP® 1124 543 79.32 3 3.0) 0.7
COWPARARLF ARRAY NAYME RE 40 &0 130,02 b] J.02 J 2.0
CONSTANT FOR ARRAY REF RE 40 4D 10C.OY 2 D.DY] D.73% 4
SCALAR FOR ARRAY REF REP, 315 315 100,92 b] 0.7% bl 0.34
ARRAY REF, FOX ARRAY REF, 7S 75 120.3%) J.3% J J.0e
UNARY CPERATOR INSERTION 191 1%9 96,01 b] J.0% 2 1.2
ARITH®ETIC OPERATIP REPLA 107 107 10n.0% h] 0.2% J 0.0Y
RELATIONAL OPERATIR REPLA 9r 89 90.mY b] 0.0% 9 9.27
LOSICAL CONNECTOR REPLACE 17 12 192,92 b I P § 4 3 3.0
A9SOLUTE VALUE INSERTIONV 263 93 3R,.8% b 3.21 167 51,3
, STATERENT ANALYSIS 29 29 102.0% d 0.0 2 0.0¢
; STATEWENT DELEYIOV 38 35 153.0% bl 0.0 p] A0
' RETURY STATEWENT REPLACEY 61 61 12).02 b] b H J .0
GOTO STATEPENT REPLACEWEN 49 47 95.9% b) 0.I% 2 Y k4
DO SYATEPENT END REPLACEN 32 2% TE.1Y b 0.1% 7?7 21.5%

MUTANT STATE FOR WOVENY
E FOR EXPERIWNENT “MOVENY " THIS IS RUN 22

NUMBER OF TEST CASES = 41

NUMBER JF BUTANTS = 5095

NUYBER JF ODEAD MUTANTS = 4299 € 96.2X)
NUM3ER OF LIVE WJUTANTS = 0 ¢ 0.0%m
NUMBER OF EQUIV MUTANTS = 196 (. 3,9%)

) ————

NUWPER OF WUTANTS WHICH DIED BY NON STANPARD WEANS 2206
NORPALIZED FUTANT RATID eeaen)

NURSER OF WUTATASBLE STATEVEN]S = 63

CIVING A “UTANTS/STATENENT RET1D OF BD.R?

.

i : NURBER OF DATA REFERENCES o 1858
j NUPBER OF UNTQUE BATA REFERENCES = 32

: TALL MUTANT TYPES MAVE BEEN EWABLED

Figure 4 cont.

57

LISTING YAf PROGRA® UNIT “QOVEED b

SJIRDITINE MOVEED(SOURCE,SLEN,SDEC,MFSTY, OLEN,P IV, 2015,00E(,
s PIC,TER)

LOSICAL SUPRFS, NEGNO

INTEGE® X(5), SU32, SU31, IH1, PLDIC, IVAR, I, SCRUNT, DESTHI

INTEGER CHAR, PDIGLN, SDIG, SARRAY(SI), PICST, DIE?

INTEGEP ST¥T(3,10), CODE(3D), SYnTA2(10,9)

CHAR WEWORY(31D)

INTEGER 1R

€42 PICCTY)

INTEGER POEC, PDIG, PLEN, DLEN, DEST, SPEC, SLIN, SOURTE

IN?UT QUTPUT WENDARY, IER

IN3YT °Ic, °DEC, PDIS, SLEV, DLEN, DEST, SPES, SLEN, SMJRCE

SUSRES = .TRUF, v7
00 5 I=1, °SLEN ce
S SARRAY(]) = *p° ia
PLDIS = PDIG = PDEC e
SPIG = SLEN = SOEC 21
IF(SDEC .F3. 0) 5079 11 G? av
SU31 = PLPIG 2¢
SU32 * (SDYRCE + SDIG) - ¢ 9%
D2 1) 1s1, SPEC 98
SU3T = SUET + 1 a7
$U32 = Sug2 + 9 9<
IF(MEMIRY (SU32) .EC, *#°) 1ER s & $% 153
13 SARRAY(SUS1) = MEMIRY(SJ82) 19
IFCIER .NE. D) 6OTD 101 1:2 103
11 IF (SDIG .GE. PLDIG) IHT = PLOIG 18
1F(SDIG LY. PLDIG) INI = SDI5 1-7 ars
SU31 = Pinlc * 1 1.2
$us2 = SOUPCE + SPle 19
D2 15 I=1, 1MWl 119
$J31 = SUST « 1 12
SUR2 = SUR2 = 1 13
IF(PEYORY(SUI2) EQ, *#') IER = & 114 1158
15 SARPRAY(SUR1) = MEMIRY(SUB2) 11¢
IF(IER _NE, 0) 3270 101 117 116
15 SURY = (SNUKCE ¢ SLEMN) = 1 R b e
CALL UNPACT(®EWORY(SU®1),Xx,2) 122
NESND = X(2) .E3. 'e! 121
Su21 = DEST 122
SCCUNT = 2 123
02 100 Ieq, PLENM 124
SU31 = DEST ¢ 1 . 12%
TFCCDEST & 1) - 1 .GT. COLEN ¢ DEST) = 1)) GIT 126 127
CHAR = PIC(1) 12¢
IF(PICCI) .E3. '9*) SUPAES = .FALSF, 127 130
IF(SARRAY(SCOUNT ¢ 1) _NE. °D%) SURES = FA.SE. - 131 132
IFCCMAR NE. '=') 6370 20 133 132
MEVORY(SUBY = 1) = 0 135
1FC1 .E2. 1 .AND, NEGND) VEMORY(SUST = 1) = o=t 136 137
1FC1 .E2. 1) €370 100 138 139
SCOUNT = SCOUNT ¢ 1 140
JFC.NDT. SJPRES) 6OTO 99 141 162 ,
1F (NEGNO) WEMDRY(SURY = 1) & ot 143 144
TFCREMORY(SUBT = 2) LEQ, =) WENORY(SUSY « 2) = ¢ ¢ 165 144 !
€3%0 102 147
25 IFCCHAR NT. *¢°) GOTO 30 145 1469
IFCI JE3. 1 .AVD, WEGND) WEWORY(SURY = 1) & fo¢ 152 151
TFCI oEB. § JAND. .NOT. NEGNO) MEWDRY(SUSY = 1) & te! 152 153
1¥CT .E2. 1) GOTo 100 156 158
SCOUNT & SCOUNT ¢ 1 156]
1F(.NOT, SUPRES) GOTO 99 157 956 L
I (NEGNO) WEMORY(SUBY = 1) » o9 159 183 | ;
IF (.NOT. NEGNO) MEMORY(SURY = 1) = *e? 161 1€2
IFCMEMORY(SUIT ~ 2) .EQ. '¢') REANRY(SUBY = 2) = ¢ ¢ 163 164
TFOREVORY(SUIT = 2) E3. "=0) MERGRV(SUZY = 2) = ¢ o 155 958
6070 123 157
30 IFCCHAR .NE. '$') §0TO0 4D LT
IF (1 .€Q. 1) WEQORY(SUBY = 1) = o5t 170 171 ;
IF(1 LE3. 1) 301D 12D 172 113 i
SCIUNT & SCOUNT o 1 174 !
IF(. 0T, SUPRES) ¢OTO)
QEAIRY(SUAY = 1) = 199 s :;; |
IFCNENIRY(SUYY =~ 2) ,En, *ge) wgw -
8 hass: o *SY) WEMORY(SURY » 2) @ ¢ o 178 175 !
10 .
Figure 5 MOVEED Original Program Listing
e —

,‘e{i B S s

paisien g Tl W R e L e e e

58
(3] IF(CHAR _NE, *¢') GOTO 50 11 172
SCOUNT = SCOUNT o 1 13
IF(.NJT. SUPRES) 35070 97 166 155
WECORY(SUBY = 1) s ¢ 1.
670 100 1-7
b1i] TFCCHAR NE, '2%) GOTD 55 18 V-
SCIUNT = SCOUNT « 1 i 120
1FC.N2T. SUPRES) §0TO 67 1ty 1722
PECQRY(SUBY ~ 1) = * ! 143
6379 10D 178
5S 1F(CHAR _NE, '9') §OTO 82 145 165
SCOUNT = SCOUNT ¢ 1 167
MEWORY(SUIT = 1) = SARRAY(SCOUNT) 134
G310 10 1ec
69 IF(CHAR _NE, *3%) 8070 72 273 2M
PEYORY(SUSB) = 1) = & ¢ 272
6072 102 27
72 IF(CHAR _NE. */') GOTO 82 2 4 275
wEW3RY (S4BT - 1) = V40 275
€nTd 132 2°7
4] TE(CHAD _NF, *V') 50T0 81 275 239
€010 130 211
81 IF(CHAR _NE, *.*) 5070 B2 211 212
MEBORY(SUBY = 1) = ', 211%
6972 122 244
L] IF(CHAR NE. *,%) 6OTC o3 215 218
TEC.NOT, SUPRES) REWIPY(SURY =« 9) = ¢, 217 21¢
IF(SUPRES) ME®ORY(SU3T1 - 1) = ' ! 213 22"
5079 120 : 221
83 1ER = 3 222
6070 101 223
99 WEWORY(SURY = 1) = SARRAY(SCOUNT) 224
1 CONTINUE 22¢
14 CIVTINVE 22+¢
RETURN 227
END
Figure 5 cont.
E
TeST CASE WUWBER 9
SARAWETIRS ON INPUT
SIURCE = 29¢
SLEN = 7
SPEC = 7
DESY = S
DLEN = 8
PLEN = €
PpIc = 7
PDEC = 2
PIC = “222219.994#"
I1ER =)
PENORY o "ANSASNNCIOQNANNNRORENRENINRANS : 03101- vJuuu
“ 222221212 25 1)- 235707 2223
.3 ‘0009 13888V teeveed 55
. 9,999.9 99799793 99320339 YEXKYAXX
(3333333338341 YYYYYYYYYSDAI2902)D08CPEELSERIF2ELSEYV2I3J1CONENVvOFIV ML Y2
CHNSENNINIURINNSNONRNNNSIIOUYUUVALZRTTI222222 333530331020=712345¢7¢ ¢
LI IT LI I i
PAZANETERS DV QUTPUTY !
QEUIRY B TEONE 1234 . SARNNNNSNICRERICIONN 2101~ vJuJy
°p 12222322318 3% 10~ 235787 222
.99 000,90 sasssY 1600a009,.33
. 9,999.% 99799793 92092399 EXARYRAR
CXXAAAXNNXAXX TYYYYYYYYSCed21020048COEELSE21F2ELSEY2D30IDINECO ROV RO LO RN
CRENNNNSNGNSINN QNN RAORPREEOUUUUUALZ 2222221 333523339233=21284547¢er !
YIIIITT i
1ER s 0 ‘
i
1

Figure 6 MOVEED Test Case that Uncovered an Error

59

PIC - CHARACTER array which contains the Cobol PICTURE for
the edited move.

INPUT/OUTPUT DATA

MEMORY - CHARACTER data that contains the programs memory.

IER - INTEGER used as error indicator.

The numeric edited move takes data from a source field
and places it in a receiving field according to what may be
called a template or instructions specified in the Cobol
PICTURE,

Through the course of mutation analysis two errors and
redundant conditional statements were found in MOVEED. The
first error detected involved a Fortran DO loop where the DO
loop was being executed once when it should not be executed
at all. The specific statement is:

DO 15 I=1,IHI

at 1line 111 in Figure 5 where IHI has been assigned the
value of SDIG (number of digits in the whole part of a num-
ber) or PLDIG (number of allowable digits in the whole part
of the PICTURE description). The test data that uncovered

this error is shown in Figure 6.

The program was corrected and the affected lines for
the new program are shown in Figure 7. The new line is the
line with the Fortran statement label 11,

The second error that was uncovered by mutation
analysis involved the handling of the PICTURE item 'V' which

means that a decimal point is not placed in the receiving

R vAS R il

243
60
1 1F(S>16 .E3. D .OR. PLDIG .Ea.) 5370 1% 106 108
Wl = oLDIC . °
;I(SD!C .LT. PLOIG) IMI = SDIG 127 :?9
su3t = PLOIG ¢ % 112
Sy32 = SOURCE ¢ SOIG 111
PO 15 1=, 1IWl 112
$931 = Sus1 = ; 113
Y32 = SU3I2 - 115
:r(wsnonv(suaZ) JEG. 'H') IER = & 16 Me
1 SARRAY(SUST) = WEMORY(SUD2)
Figure 7 Corrected Program Section of MOVEED
TESY CASE NJWBER 1
SARAMETERS IV INPUT
SCURCE = 294
SLEN = 8§
SDEC = &
hEST = §
DLEV = 7
SLEN = R
PDIS = 7
PNEC = 3
PIC = "5379vI3%y "
1FR = 0
MEMORY = “SNUSNRUNRARCNRNOTNINGAINNNNNEN 0151~ uJyJu
A 1222122212 0s 12- 235787 2213
..9% rees .9 [3¥$21Y seennny 39
. 9,299.2 99/93/99 99899279 XXXAXXXX
EXXXXXAXAXXAX YYYYYYYYYIN4D21020NASCOEELSE2IF2ELSET120RI1DINECnavNmputicaey
CRNNVINNNT NN PNNUUNCNUNVOENNVVIUUATIIIZI2222 3335322310 F1234587Cawn
“h¥nNEy”
PARAWETERS ON OUTPUT
MEMORY = "NNONI2TLSETINNUNNUNSYORUNNNONSY 17191~ yJJuy
L 22211212 35 13- 2353787 1227
33 *eee.? [X1311" teeresy 93
. 3,999.9 99793/93 233933393 XXXXYXXX
3 EXXAXAAAKXL XA YYYYYYYYYIULD2902)0A8CCTELSE2IF2ELSEI12ITDINONEL VYN oYt 2
CUBUNNUUNANANU NN RN NNONNOSUIJUUALZT2IZ2222 233%333)10)%1234587¢ e
cerunN”
- I1€R = 0O
8 THE PROGRAY TOOK 1503 STEPS 1O CXECUTE

Figure 8 MOVEED Test Case that Uncovered Second Error

e

2,

R R, Ly e PP 2 AR S

61

field. This error was detected from the data shown in
Figure 8. As can be seen from the program in Figure 5, at
statement label 80, if a V is the item in the picture, then
nothing is done and control goes back to the top of the loop
where the next item in the PICTURE description is retrieved.
The error occurs because the pointer (variable SUBl) for the
next available location 1in the receiving field is
automatically incremented at the beginning of the loop; to
correct this error subtract 1 from SUBl when a V instruction
is detected. The original method for calculating the next
available 1location wused the DO loop index and the absolute
location of the destination field. This disregards the
statement SUB1=SUB-1 executed when a 'V' is encountered,
making it mandatory to rewrite the handling of the destina-
tion pointer. The new code is given in Figure 9. It has
been indicated that some conditional statements were redun-
dant 1in the original program. These have been rewritten as
can be seen in Figure 9 also. Figure 5 contains the program
with the 'V' error and with the redundant statements. It
can be seen from this listing that several redundant con-
ditional statements have no effect on the result of the
program, These redundant statements have been taken out or
rewritten as can be seen by 1looking at Figure 9.
Specifically, a redundant conditional statement exists for

statement 106 where IHI is assigned the value of PLDIG if

SDIG is greater than or equal to PLDIG;

N s e e

]
62]
i
!
!
LISTI%G THE PROGRAW UNIT “WOVEED - i
SUARHITINE WOVEED(SOUPCE, SLEN,SPEC,DEST,OLEN,OLEV,PD1G.23EC, 1
& PIC,IER) !
LOSICAL SUPRES, MESND
INTESER X(5), SU32, SUR1, IH3, OLD1G, IVAR, I, STJINT, HESTAI {
INTESER CHAR, PDJ5LN, SDPIG, SARRAY(SD), PICST, DOEC !
INTEGER ST®T(3,10), CODE(30), SYSTAR(IC,3) ;
tHaR WEMDRY(31D) |
INTESER IER :
CHAR P1C(1D) i
INTEGER PDEC, ©D1G, PLEN, DLEN, DEST, SDEC, SLEN, SOURCE i
INPUT JUTPUT WEWDRY, IER i
INPUT P1C, POEC, PDIG, PLEN, OLEN, OEST, SDEC, S_E¥, SOURCE !
SUPRES = ,TRUE. 7 i
03 5 I=1, °LIN .3 |
s SARRAY(I) = *D° °9 :
PLCIG = PDIG - POEC 9z ,
$015 = SLEY = SDEC “ .
1F(SDEC .E2. D) 627D 19 c2 ot
$J31 = PLDIS 9 {
SU22 = (SOHURCE ¢ S$DIG) = 1 25
05 10 1=1, SDEC o¢
Su31 = SU31 ¢+ 1 97
5432 = SUB2 ¢ 1 9!
I1F(NENORY(SUB2) .Ea, *#') JER = & ¢y 172
12 SARRAY(SUB1) = WEMIRY(SU32) 471
IFCIER NE. D) GAYO 101 12 1.2
11 1F(SDI5 .E3. D .OR. PLDIG .EG. D) 607D 16 17 135
1HI = PLPIS 175 {
1F(SDIC .LT. PLDIG) IHI = SDI1G 107 125
SURt = PLDJIG # 1 127
SUR2 = SOURCE ¢ SDIG 110
59 15 I=1, Inl 11
SU31 = SUBY - 1 142
syaz = sug2 ~ 113
IF(MENDRY(SU32) .EG. *#') JER = 4 114 145
15 SARRAY(SUB1) = MEWORY(SU32) 14
TF(1ER NE. D) GOTO 10 147 110
16 SU31 = (SOURCE ¢ SLEN) = 1 119 ¢
3 CALL UNPACK(MEWORY(SUR1),X,2) 1240
‘ NEGNO = X(2) .EG. '=' 121
SU31 = DEST 122
SCOUNT = O 123
00 100 1=9, PLEN 124
SU31 = SURY ¢ 9 125
TF(SU2Y .6T. DLEY ¢ DEST) 6070 101 128 127
CHAR = PICCI) 12¢ .
IF(PICC(I) .E3. *9') SUPRES = .FALSE. 129 10 C
IF(SARRAY(SCCUNT ¢ 1) . NE. 'D') SUPRES = _FALSE. 131 132
IF(CHAR ,NE, *=%) GOTO 2] 133 1%
wEvwOoRY(SUAT = 1) = ¢ ¢ 135
IF(NESNG) WEYORY(SUBY = 1) = '=? 16 43?7
. I€(1 .Ea. 1) 637D 100 130 113
2 SCOUNT = SCOUNT + 1 163
1F(.N0T. SUPRES) GOYO 99 161 142
1F(MEMORY(SUST = 2) .E2. '=') PEWORY(SUBY = 2) = * ¢ 143 146
€910 17D %S C
23 16(CHAR ,NE, *+%) GOTO 3D 143 147
IF(NEGND) WME¥IRY(SUBY = 1) = *=* 16% 149
1F(.N0T. NEGNO) MEWORY(SU31 = 1) & ‘¢! 150 151
1F(1 .E@. 1) 607D 100 152 152
SCOUNT & SCOUNT ¢ 1 54
1F(.NCT. SUPRES) €OTO 979 185 158
TE(RERORY(SUIT = 2) .E2, *¢') CEWORY(SURY = 2) = ¢ ¢ 157 5%
TE(PERORY(SUIT = 2) .Fa. *«') WEWORY(SUBY = 2) = ¢ 1 159 140
010 102 189
‘ 30 IF(CHAR NE. 939) €OTO 40 162 183 C
p MEVORY(SUBY = 1) = ¢3! I
1F(1 .E3. 1) GOTO .100 155 154
SCIUNT = SCOUNT » 1 147
3 1F(.NOT, SUPRES) 6270 99 158 169
) TF(MENIRY(SUIT = 2) .FQ, '$') EMORY(SUBY = 2) = ' ¢ 179 171
g 6319 170 172
4) TFECHAR NE, ®et) 5070 50 173 174
SCIUNT = SCOUNT ¢ 1 175 :
15(. %97, SUPRES) 6OTO 97 178 177 (8]
SEVNRY(SUAY = 1) » te? 178
5310 102 179
53 TF(CHAR NE. °1%) 6070 $S 183 19 .
SCIUNT = SEOUNT ¢ 1 [LY]

Figure 9 MOVEED Final Corrected Program Listing

T T I A ey T

IF(.NIT, SJUPRES) G210 99
VEWORY(SUIY - 1) = v ¢
6319 Y1)

SS TFCCHAR _NE_ *3') coTe 69
SCOUNT = SCOUNT o 1
MEYOIY(SUIT = 1) = SACSAY(SCIUNT)
€Ir3 132

%) TF(CHAR NE, '3') 50TC 7))
SE®IN(SYQT = §) = 0 0
ror3 132

77 TFC(CHYAR _NE, /%) §0TO 8)
YEWIRY(SUDT - 1) = 00
5213 13D

0 IF(C4AB NE, 'y') 50Tn 81
SU41 = Sust = 9

3913 172
1 TF(CHAR NE, *.') GOTC 92

WEWIRY(SUEY = 1) = *,°

G312 110
®2 IF(C482 NE, ', ') 3070 83

IFC.NIT, SUFRFS) WEWOPY(SUBY = 1) = o, ¢

IF(SURES) WEMIRY(SUBT = 1) = ' ¢

%5310 190
’3 152 = 2

£9719 179
*? vEYARY(SUET = 1) = SARRAY(SCOUAT)
1) CINTIuYE
101 2. TRY

£ND

Figure 9 cont.

WUTANT ELIWINATION PROFILE FOR WMOVEED
WHTANT TY2E TOTAL DEAD <1VE
CONSTANT REPLACEMFNT 151 165 96.7% 3
SCALAP VARIAGLF RECPLACE®E 2430 26413 37.3% 3
SCALAR FNF CONSTANT REP, 121 111 93,82 b
CONSTANT FOR SCALAQG REP, 894 692 ?9.7% b)
SOURCE CONSTANT REPLACEWE 831 599 3y.7X b1
ARRAY REF. FOR CONSTANT R 470 475 129.07 b]
ARRAY REF, FOP SCALAR REP 1341 1330 Fe,6X b]
COPPARARLE ARRAY NAYE RE 160 165 132,0% h]
CONSTANT FIR ARRAY REF RE 135 125 122.3% b]
SCALAY FNP ARRAY PESF REP. s8¢ 6°0 33.47 b)
AFRAY REF. FOR ARRAY REF, 251 246 3%.0% b)
UNAPY DPERATOR INSERTIONV 325 318 7.8)
ARITHYETIC OPERATOIR REPLA 21e 21° 1230.0% b]
RELATIONAL OPERATOR REPLA 210 191 91.0% J
LOGICAL CINNECTOR REPLACE 5 $ 120,00 b]
A3SOLUTE VALUE INSERTION 399 151 37.8% b]
STATEYENT ANALYSIS *) LECE Bol 8 14 b]
STATEYENT NFLETION Sé S¢ 100.2Y b
RETURY STATEWFNT REPLACEY 128 125 100.0% J
GOTD STATENENT REPLACEWEN S48 636 9¢.1X J
DO STATEWENT £N40 REPLACEM 78 72 9%.7% 3
wUTANT STATE FOR KOVFED
CFOP EXDERIWENT "WIVEED " THIS IS RUN 18

NUMBER OF TEST CASES & 65

NUYAER OF RUTANTS = 9841

NUMAER OF DEAD WUTANTS = 9503 € 96.5%)
NUYRER OF LIVE WUTANTS = D¢ 0.00)
NUYBER OF EQUIV MUTANTS s 338 ¢ 3.47)

NUYBER OF NUTANTS WHICH DIED BY NON STANDARD PEANS 45397

NOOMALIZED MUTANT RATID eeeosy
NUNSER OF SUTATAILE STATEPENTS e 133
GIVING A WUTANTS/STATEWNENT RATIO OF

NUYBER OF DATA REFERENCES o 272
NUMSER OF UNISUE DATA REFERENCES = 34

ALL MUTANT TYPES NAVE BEEN ENABLED

73.99

193 194

135
196

127 1f0

159

132 173

1964

13 197

270 201

"~

]
”»~
~N
¥
w

208 239
210 211
212 213

eIyl

-

Y

-
SNLVULEIOUUNVPOUOUL2ONVNY NN

~
»

-

Figure 10 MOVEED Status Information after Testing

219

o ot it i T s

= Mt i

54

IF (SDIG .GE. PLDIG) IHI=PLDIG

but, the next statement
IF (SDIG .LT. PLDIG) IHI=SDIG

will reassign the value of IHI to SDIG if SDIG is less than

PLDIG; it can be seen that the first conditional statement
can be changed to the assignment statement IHI=PLDIG because !
it will be reassigned if the following conditional statement
is true.
Another redundant conditional statement is the
statement containing mutants 136 137 where the statement:
IF (I .EQ. 1 .AND. NEGNO) MEMORY(SUB1l - 1) = '-!

does not need the compound conditional portion I LEQ. 1

because the next statement takes care of that portion of the {
conditional. This is rewritten:

IF (NEGNO) MEMORY(SUBl - 1) = '-='
which allows the deletion of this statement later at loca- {
tion 143 144.

As in the previous conditional statement, envolved with
the execution of a negative picture item, the same redundant {
conditionals exist for the positive picture item.

The code for dealing with the Cobol floating dollar
sign can be compacted for the same reason the conditionals ‘
can be rewritten in the code for the floating negative and
positive signs.

The rewritten MOVEED subroutine is shown in Figure 9 {

and the results of the mutation testing indicate that the

' B - _ .
T T et U R bl A S 4 e D S ol SR P el A Rl Wi i im0 A i, e e A e e e B sl e L

routine 1is now correct. Figure 10 contains the status in-
formation for the testing of subroutine MOVEED.

After becoming familiar with the FMS.2 system the test- }
ing sessions were easier to conduct. During the testing, an
error was detected in the FMS.2 system which involved COMMON
blocks where the data items had to be defined after the COM-
MON block statement which is oppositite of the way it should
be with the declarations before the COMMON block definition.
As an inexperienced user of the FMS.2 system, I had a few
suggestions for the format of some user instructions which
% were mainly personal preferences that would not affect the
systems performance. I also gained some insight for user

interface for the CMS.1l system.

I found with testing that my programming style could be
4 changed in order to avoid redundant code and unnecessary
variables.

] The results of the routines which were tested revealed 1

what was believed to be true. The routines MOVENM and i

MOVENW proved to be correct and fully tested. The testing ;
of subroutine MOVEED was done because it was known that it
had not been fully tested and might contain some errors.

The testing revealed two errors and allowed for the complete

testing and generation of sufficient test data. The three
routines are now tested and presumably correct; as a result

of the testing, I have confidence that the routines perform k

as they should.

66

CHAPTER 1V

CONCLUSION

Mutation systems have been implemented for Fortran,
Lisp, and now for Cobol. Mutation analysis allows a
programmer to improve his test data through an interactive
process with a mutation system. Performing this iterative
process allows a user to become confident that his program
is correct.

CMS.1 has been implemented and operational since the
Fall of 1979 with no reported problems. Several of the
major routines of CMS.1 have been tested on the Fortran
mutation system, FMS.2, at Yale University which increases
the confidence in the Cobol system as a useful operationai
system for program testing of Cobol.

CMS.1 has been limited to a certain Cobol subset which
should be expanded to support a wider range of typical Cobol
programs. These expansions should include Cobol subroutine
calls, search capabilities, and report generation. The
system was designed with portability as a major considera-
tion and also with expandability of the system in mind. A
discussion of system routines and machine dependencies is
given in Appendix B.

A current limitation 1in CMS.1l is the I/0 because the

input and output must be in buffered core arrays; this
problem could be eliminated by redesigning the I/0 handling
routines to use disk direct access. This will cause some
consideration of ‘'What 1is meant by correctness of output
with direct access files'. Will it be required that records
must be read and written in the same order as they were in
the original program or should the final results be the same
as the original programs final results without caring in
what order the data was generated. If the requirement for
correctness is the final results must be identical, then the
mutant programs will have to run to completion before a com-
parison of the output can be made; this will slow down
processing.

There are some Cobol data types which are not currently
implemented in CMS,1l, These data types include condition
names, alphabetic type, edited alphanumeric, computational
type, and index type.

It has been suggested that mutation systems might be
more efficient if they could mutate compiled code instead of
interpreting code. This enhancement would require the
capability to decipher compiled code to determine a
statements operation and the capability to alter this code.
Mutating compiled code would allow for easier implementation
of subroutine calls and the necessity for a SYMBOL TABLE
would not be necessary. The mutation of compiled code would

increase the efficiency and testing time of programs.

(al
(aA]

[ABDLS]

[BDLS]

[Bur]

[(Budd]

[DLP]

[DLS1]

(DLS2]

(s1]

68

BIBLIOGRAPHY

Allen T. Acree, CMS.1 Users Guide, July 1, 1979.

Allen T. Acree, Phd. thesis to be published
Spring quarter 1980.

Allen T. Acree, Timothy A. Budd, Richard A. DeMillo, ’
Richard J. Lipton, Frederick G, Sayword, "Mutation
Analysis".

T. Budd, R. A. DeMillo, R. J. Lipton, and F. G.
Sayword, "The Design of a Prototype Mutation System
for Program Testing,” Proc. 1978 NCC, AFIPS
Conference Record, pp. 623-627.

J. Burns, "The Stability of Test Data from Program
Mutation Digest for the Workshop on Software Testing
and Test Documentaion, Fort Lauderdale, Fla., 1978,
pp. 324-334,

Tim Budd, The Generation of Test Cases for Mutation
Analysis Internal Mutation Group Memo.

Richard A. Demillo, Richard J. Lipton, and Alan J.
Perlis, Social Processes and Proofs of Theorems
and Programs, Communicataions of the ACM, May 1979,
Volume 22, Number 5.

R. A. DeMillo, R. J. Lipton and F. G. Sayward, "Hints

on Test Data Selection: Help for the Practicing
Programmer," Computer, April, 1978, pp. 34-41,

R. A. DeMillo, R. J. Lipton and F. G. Sayward,
Program Mutation: A New Approach to Program
Testing ," INFOTECH State of the Art Report on
Software Testing, Vol. 2, INFOTECH/SRA, 1979,
pp. 107-127.

Donald A. Sordillo, The Programmer's Ansi Cobol
Reference Manual, Prentice Hall Inc., 1978. 4

